
COMPUTER
SCIENCE

A LEVEL
Delivery Guide

H446

Theme: 1.2.4 Types of
Programming
June 2015

We will inform centres about any changes to the specification. We will also
publish changes on our website. The latest version of our specification will
always be the one on our website (www.ocr.org.uk) and this may differ from
printed versions.

Copyright © 2015 OCR. All rights reserved.

Copyright
OCR retains the copyright on all its publications, including the specifications.
However, registered centres for OCR are permitted to copy material from this
specification booklet for their own internal use.

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee.
Registered in England. Registered company number 3484466.

Registered office: 1 Hills Road
Cambridge
CB1 2EU

OCR is an exempt charity.

http://www.ocr.org.uk

3

CONTENTS

Introduction Page 4

Curriculum Content Page 5

Thinking Conceptually Page 6

Thinking Contextually Page 11

Learner Resources Page 12

A LEVEL
COMPUTER SCIENCE

4

Delivery guides are designed to represent a body of
knowledge about teaching a particular topic and contain:

•	 Content: a clear outline of the content covered by the
delivery guide;

•	 Thinking Conceptually: expert guidance on the key
concepts involved, common difficulties students may
have, approaches to teaching that can help students
understand these concepts and how this topic links
conceptually to other areas of the subject;

•	 Thinking Contextually: a range of suggested teaching
activities using a variety of themes so that different
activities can be selected that best suit particular classes,
learning styles or teaching approaches.

If you have any feedback on this Delivery Guide or
suggestions for other resources you would like OCR to
develop, please email resources.feedback@ocr.org.uk.

KEY
Click to view associated resources
within this document.

Click to view external resources

Introduction

only AS Level content only

5

a) Need for and characteristics of a variety of programming paradigms.

b) Procedural languages.

c) Assembly language (including following and writing simple programs with the Little Man Computer instruction set).
See appendix 5d.

d) Modes of addressing memory (immediate, direct, indirect and indexed).

e) Object-oriented languages (see appendix 5d for pseudocode style) with an understanding of classes, objects,
methods, attributes, inheritance, encapsulation and polymorphism.

Curriculum Content

6

Thinking Conceptually

Need for and characteristics of a variety of programming paradigms Resources

There are many different types of programming language. Until students have tried a few different ones they will not necessarily
appreciate the differences between them, but for the course it is important to know some of the basic differences they may
encounter.

Students can use the resources given as activities at the bottom of this document to support their learning.

There is a great set of posters available that can be put up around the classroom and covers many different types of
programming language, found at: http://community.computingatschool.org.uk/resources/1872
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/types_language/miniweb/index.htm

Click here

Click here

Procedural languages Resources

Procedural programming uses a list of instructions to tell the computer what to do step-by-step. A procedural language uses
blocks of code called procedures or routines. It is also referred to as imperative programming. It is intuitive because it is similar to
how you would expect a program to work, and most early programming languages followed this approach since OOP had not
been introduced yet.

A very good video that introduces the ideas of procedural languages vs object-oriented can be found here:
http://education-portal.com/academy/lesson/object-oriented-programming-vs-procedural-programming.html (You are limited
to the first five minutes but this is enough to cover the basic ground.)

http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/types_language/miniweb/pg3.htm

Click here

Click here

http://community.computingatschool.org.uk/resources/1872
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/types_language/miniweb/index.htm
http://community.computingatschool.org.uk/resources/1872
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/types_language/miniweb/index.htm
http://education-portal.com/academy/lesson/object-oriented-programming-vs-procedural-programming.html
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/types_language/miniweb/pg3.htm
http://education-portal.com/academy/lesson/object-oriented-programming-vs-procedural-programming.html
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_6/types_language/miniweb/pg3.htm

7

Thinking Conceptually

Assembly language (including following and writing simple programs with the Little Man Computer instruction set)
See appendix 5d

Resources

Assembly language is a low level programming language. This means that it provides very close control of the CPU. However,
assembly language, being a low level language, is hard to understand, and programmers need to have a good understanding of
the way the CPU works, such as the fetch decode execute cycle.

The Little Man Computer is a free piece of software that models a Von Neumann architecture computer designed for educational
purposes. Students may already be familiar with this from GCSE. It can be programmed in machine or assembly code. This does
require software to be installed from http://www.yorku.ca/sychen/research/LMC/

Some of the commands are as follows:

INP Input to the accumulator. The user can type a
number

STA VariableName Stores the current value of the accumulator into
‘VariableName’

LDA VariableName Loads ‘VariableName’ into the accumulator

ADD VariableName Adds’ VariableName’ to the current value of the
accumulator

http://en.wikipedia.org/wiki/Assembly_language

Click here

Click here

http://www.yorku.ca/sychen/research/LMC/
http://en.wikipedia.org/wiki/Assembly_language
http://www.yorku.ca/sychen/research/LMC/
http://en.wikipedia.org/wiki/Assembly_language

8

Modes of addressing memory (immediate, direct, indirect and indexed) Resources

An addressing mode refers to how you are addressing memory in a given location.

It would be useful to teach this part of the specification using the websites listed below.

Immediate addressing is called that because the value to be stored in memory immediately follows the operation code in
memory. For example, the instruction: MOV A,#30h

This instruction uses immediate addressing because the accumulator will be loaded with the value that immediately follows; in
this case 30 (hexadecimal).

Immediate addressing is very fast since the value to be loaded is included in the instruction. However, since the value to be
loaded is fixed at compile-time it is not very flexible.

Direct addressing is called this because the value to be stored in memory is obtained by directly retrieving it from another
memory location. For example: MOV A,30h

This instruction will read the data out of RAM address 30 (hexadecimal) and store it in the accumulator. Direct addressing
is slightly slower than immediate addressing; although the value to be loaded isn’t included in the instruction, it is quickly
accessible since it is stored in RAM. It is much more flexible than immediate addressing since the value to be loaded is whatever is
found at the given address, which may vary.

Indirect addressing uses a second register (known as the base register) which holds the actual memory address that the
program is interested in.

A block of memory called a ‘vector table’ is used by the loader to store the address of every subroutine in the library. The CPU gets
the data by referring to a location in the vector table and then retrieving the memory location stored there. This address is then
used to fetch the data.

The instruction MOVA,@4000 looks to this location for an address. Location 7000 is returned. Looking up in this location returns
the value 300.

Indexed addressing uses a base address to a block of data, then an index is used from this address to access various parts of the
block.

http://en.wikipedia.org/wiki/Addressing_mode

http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_8/lowlevel/miniweb/index.htm

Click here

Click here

Thinking Conceptually

http://en.wikipedia.org/wiki/Addressing_mode
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_8/lowlevel/miniweb/index.htm
http://en.wikipedia.org/wiki/Addressing_mode
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_8/lowlevel/miniweb/index.htm

9

Object-oriented languages (see appendix 5d for pseudocode style) with an understanding of classes, objects,
methods, attributes, inheritance, encapsulation and polymorphism

Resources

Object Oriented Programming (OOP) is an approach to creating programs that makes use of objects
Objects are components of an OOP program that performs certain actions and knows how to interact with other parts of a
program. It is important that students understand clearly the terminology associated with OOP.

Classes are the blueprints of an object that can be reused. If we take an example of a person, we could say that a person has
a name, can do things like speaking and walking. This would be our blueprint. We can create multiple objects of this class by
instantiating them, a bit like jelly coming out of a jelly mould. When an object is created, it has a method in the class called the
constructor that sets up all the properties a newly created object should have.

Methods and attributes can be part of a class. Taking the person example, Name and Date of Birth would be attributes, whilst we
would create methods (actions) to make the person speak or move.

Inheritance uses the ideas of parent and child (super- and sub-classes) to abstract certain behaviours and attributes for similar
classes. For instance, if our person class was in a program with a lion and a penguin, we might have a parent ‘Animal’ class with
the attributes Name and Date of Birth, as well as a Move method in order to inherit these directly into the subclasses Person,
Lion and Penguin. Therefore if we were to change the general attributes in the parent class, these would all be applied to the
subclasses too.

Encapsulation is a way of ensuring that methods and attributes have the right permissions set for accessing and altering data.
This is sometimes called information hiding. These are usually termed as public and private and are usually used to stop data from
being changed accidentally.

Polymorphism is a property of OOP that allows the programmer to make a program accept any data that they want into a
method and it will be able to cope with it. For instance, if we had a base class called shape, our area method should be able to
accept circles, triangles etc and the area should still be calculated correctly. This usually uses a process called ‘Overloading’.

Object oriented programming concepts (Naresh Proddaturi)
http://community.computingatschool.org.uk/resources/970

A pdf file containing an explanation of OO concepts.

Click here

Thinking Conceptually

http://community.computingatschool.org.uk/resources/970
http://community.computingatschool.org.uk/resources/970

10

Common misconceptions or difficulties students may have
Students will find assembly language using LMC quite difficult at first,
but there are now some very good resources out there to help students
gain familiarity and confidence with the subject matter. Of course, some
students may have already covered this at GCSE level.

It would be beneficial for students to keep a glossary of key terms. The
activities given at the end of the document should help with this.

Conceptual links to other areas of the specification – useful ways to
approach this topic to set students up for topics later in the course
A student may choose to use one of the languages discussed in this
part of the specification for use in class, but it is usual for centres to steer
students to something that has been taught. Students may end up using
some features of object-oriented programming in their final projects.

Modes of addressing memory links with 1.2.1 – section b, which covers
memory management.

Thinking Conceptually

11

Thinking Contextually

Activities Resource

Activity 1 – Different types of programming language
Part 1

Students are to be given the statements on the cards and are required to sort them into which type of programming
language they belong to. This could be done individually by students or in groups.

Part 2

Each student should find one fact about that particular type of programming language that has not been listed.

Learner
Resource
1

Activity 2 – Object oriented programming
Part 1

Complete the quiz given in Learner Resource 2. If students do not know the answers, give them.

Part 2

Taboo is a fun game where one person has to sit at the front of their group and they have a set of things that they must get
the rest of their group to guess without using any of the words in the answer. For example, for Objects you might say “The
abbreviation for this is OOP”. You could divide students up into teams, and if anyone is a bit reluctant they could always be
the judge/scorekeeper. Cards are given in Learner Resource 3 of keywords that you might want students to cover. This is a
good way to see if they fully understand key terminology.

Learner
Resource
2

Learner
Resource
3

Activity 3 – Little Man Computer CPD pack (Mark Clarkson)
http://community.computingatschool.org.uk/resources/1573

Great CPD pack that contains all that is needed to get going with LMC at KS4/5 including a practical booklet with simple
activities that can be given to every student and then used later as a revision guide if needed.

Topics covered are getting input from the user, addition, branching and loops.

Click here

http://community.computingatschool.org.uk/resources/1573
http://community.computingatschool.org.uk/resources/1573

12

Learner Resource 1 Activity 1 cards

Low level Object oriented

‘Mnemonics’ are used as programming
code such as ADD or MOV

Makes use of the idea of classes,
objects and the ideas of encapsulation,

polymorphism and inheritance

Excellent for close control of the
CPU (sometimes called bare metal

programming). Many device drivers are
coded in assembly language

Classes can be treated as ‘black boxes’.
Other coders do not need to know how

the class works internally. They just need to
know what it is supposed to do

Machine code

Code portability is a useful feature of these
languages. You need the right compiler for

the target CPU and the code can be run
on a different hardware platform

Assembly language JAVA

They are specific to the CPU you are using,
making direct use of internal registers

C++

Need to know a lot of detail about the
internal structure of the CPU such as its

memory management and registers

‘Design patterns’ are available that solve
common programming tasks. A coder can

use an existing design pattern for a user
interface and begin coding straight away

See
page 11

13

Learner Resource 1 Activity 1 cards

Declarative Procedural

Commonly used in artificial
intelligence systems

You code specific instructions for the
computer to carry out. This can be

thought of as the ‘do-this, then-this,
then-this’ style of programming

The software will seek an answer by
interrogating a database containing

Facts and Rules
C

Prolog Pascal

FORTRAN

Functional

These languages are mostly concerned
with providing answers to problems

purely through applying calculations to
input data

These types of languages are used a lot
in highly mathematical areas such as

engineering and finance

LISP

Mathematica

14

Learner Resource 2 Activity 2: Part 1 – quiz

1. Which of the following is not a part of OOP?
a) Encapsulation

b) Multitasking

c) Polymorphism

d) Information hiding

5. The process by which one object can acquire the
properties of another object is:
a) Inheritance

b) Encapsulation

c) Polymorphism

d) Blueprints

2. What is the template of an object called?
a) Stencil

b) Class

c) Object template

d) Blueprint

6. A big advantage of OOP over traditional
programming is:
a) The objects are all declared private

b) The ability to reuse classes

c) The convenience of giving all objects in a project
the same name

d) All of the above

3. OOP promotes a way of programming that allows
programmers to think in terms of:
a) Data

b) Procedures

c) Objects

d) People

7. Constructors are used to:
a) Build a GUI

b) Free memory

c) Initialize a newly created object

d) Create a subclass

4. Information Hiding can also be termed as:
a) Cloaking

b) Inheritance

c) Moulding

d) Encapsulation

8. Two or more methods with the same name in the
same class with different arguments is called:
a) Method overriding

b) Method over handling

c) Method overloading

d) Method overcompensating

See
page 11

15

Teacher Answers Activity 2: Part 1 – quiz

Answer

1. Which of the following is not a part of OOP?
a) Encapsulation

b) Multitasking

c) Polymorphism

d) Information hiding

B

2. What is the template of an object called?
a) Stencil

b) Class

c) Object template

d) Blueprint

B

3. OOP promotes a way of programming that allows programmers to think in terms of:
a) Data

b) Procedures

c) Objects

d) People

C

4. Information Hiding can also be termed as:
a) Cloaking

b) Inheritance

c) Moulding

d) Encapsulation

D

5. The process by which one object can acquire the properties of another object is:
a) Inheritance

b) Encapsulation

c) Polymorphism

d) Blueprints

A

6. A big advantage of OOP over traditional programming is:
a) The objects are all declared private

b) The ability to reuse classes

c) The convenience of giving all objects in a project the same name

d) All of the above

B

7. Constructors are used to:
a) Build a GUI

b) Free memory

c) Initialize a newly created object

d) Create a subclass

C

8. Two or more methods with the same name in the same class with different arguments is called:
a) Method overriding

b) Method over handling

c) Method overloading

d) Method overcompensating

C

16

Learner Resource 3 Activity 2: Part 2 – cards

Object Class Attribute Method

Inheritance Encapsulation Polymorphism Parent (super) class

Child (sub) class Information hiding Overloading Private

Public Constructor

See
page 11

17

OCR Resources: the small print
OCR’s resources are provided to support the teaching of OCR specifications, but in no way constitute an endorsed teaching method that is required by the Board and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held
responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

© OCR 2015 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work.

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

We’d like to know your view on the resources we produce. By clicking on the ‘Like’ or ‘Dislike’ button you can help us to ensure that our resources work for you. When the email template pops up please add
additional comments if you wish and then just click ‘Send’. Thank you.

If you do not currently offer this OCR qualification but would like to do so, please complete the Expression of Interest Form which can be found here:
http://www.ocr.org.uk/qualifications/expression-of-interest/

mailto:resources.feedback%40ocr.org.uk?subject=
mailto:resources.feedback%40ocr.org.uk?subject=I%20liked%20Computer%20Science%20DG%20on%20Types%20of%20programming
http://www.ocr.org.uk/qualifications/expression-of-interest/
mailto:resources.feedback%40ocr.org.uk?subject=I%20disliked%20Computer%20Science%20DG%20on%20Types%20of%20programming

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.

©OCR 2015 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England.
Registered office 1 Hills Road, Cambridge CB1 2EU. Registered company number 3484466. OCR is an exempt charity.

OCR customer contact centre
General qualifications
Telephone 01223 553998
Facsimile 01223 552627
Email general.qualifications@ocr.org.uk

mailto:general.qualifications%40ocr.org.uk?subject=

	Introduction
	Curriculum Content
	Thinking Conceptually
	Thinking Contextually
	Learner Resouces

