
COMPUTER
SCIENCE

A LEVEL
Delivery Guide

H446

Theme: Computational Techniques
September 2015

We will inform centres about any changes to the specification. We will also
publish changes on our website. The latest version of our specification will
always be the one on our website (www.ocr.org.uk) and this may differ from
printed versions.

Copyright © 2015 OCR. All rights reserved.

Copyright
OCR retains the copyright on all its publications, including the specifications.
However, registered centres for OCR are permitted to copy material from this
specification booklet for their own internal use.

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee.
Registered in England. Registered company number 3484466.

Registered office: 1 Hills Road
Cambridge
CB1 2EU

OCR is an exempt charity.

www.ocr.org.uk

3

CONTENTS

Introduction 4

Curriculum Content 5

Thinking Conceptually 6

Thinking Contextually 8

Learner Resources 17

A LEVEL
COMPUTER SCIENCE

4

Delivery guides are designed to represent a body of
knowledge about teaching a particular topic and contain:

•	 Content: A clear outline of the content covered by the
delivery guide;

•	 Thinking Conceptually: Expert guidance on the key
concepts involved, common difficulties students may
have, approaches to teaching that can help students
understand these concepts and how this topic links
conceptually to other areas of the subject;

•	 Thinking Contextually: A range of suggested teaching
activities using a variety of themes so that different
activities can be selected which best suit particular
classes, learning styles or teaching approaches.

If you have any feedback on this Delivery Guide or
suggestions for other resources you would like OCR to
develop, please email resourcesfeedback@ocr.org.uk.

KEY

 Click to view associated resources within this
document.

 Click to view external resources.

 AS Level content only.

Introduction

mailto:resourcesfeedback%40ocr.org.uk?subject=

5

Content (from A level)

a) Features that make a problem solvable by computational methods.

b) Problem recognition.

c) Problem decomposition.

d) Use of divide and conquer.

e) Use of abstraction.

f) Learners should apply their knowledge of:

•	 backtracking

•	 data mining

•	 heuristics

•	 performance modelling

•	 pipelining

•	 visualisation to solve problems.

H.B. Meyer Backtracking algorithm animation (http://www.hbmeyer.de/backtrack/backtren.htm) is a great way to visualise
backtracking process. There are also links to other backtracking algorithms but the use of Google translate (from German)
might be necessary.

http://www.sorting-algorithms.com/ contains a very visual comparison of different sorting algorithms. We can change
parameters and see the differences in performance depending on array sizes and how sorted they are.

Curriculum Content

http://www.hbmeyer.de/backtrack/backtren.htm
http://www.sorting-algorithms.com/

6

Common misconceptions or difficulties students may have

To make a problem solvable computationally, the analysis
and design stages of product development will convert a
‘story’ that a customer has to a specific and unambiguous
set of objectives and assumptions/limitations. Activity
and data flow diagrams will identify type of variables, data
structure and the computational stages that will be required.
The word ‘solution’ refers to the required output, while the
‘problem’ can refer to instances of input data – a file to parse,
a string to encrypt, etc. A learner has a set of tools, which can
include knowledge of 2d arrays, recursion, API’s and so on.
The purpose is to map the problem to the tools, so that the
learner could write out a list of tools that will be needed for
a particular problem. This process of mapping will inevitably
split the main problem into smaller simpler sub-tasks – the
process known as ‘decomposition’. This process also allows us
to compare the sub-tasks and group them by type, known
as ‘abstraction’. Recognising that multiple sub-tasks can be
solved in a similar way will prompt the learner to write a
self-contained piece of code, a function or a sub, that can be
reused on multiple sub-tasks. Often, the sub-tasks are quite
similar, for example reading another line in a file, so they can
be automated through iteration. If the sub-tasks are really
similar but only differ in a parameter (e.g. search upper half of
the list vs search the lower half of the list), recursion becomes
a powerful tool and gives us the ability to branch while
iterating , known as the ‘divide and conquer’ technique used

in algorithms like Quicksort. In such algorithms, efficiency can
be improved if we can skip some of the processing-‘prune’
it. Learners need to be aware that the simplest approach of
running through every possible combination of inputs can
often be avoided through backtracking – which involves
setting up a constraint and eliminating obvious dead-end
solutions based on that constraint. This is similar to multiple-
choice technique in tests where a pupil eliminates obviously
wrong options to concentrate on the ones that are possible
answers. Backtracking is not a trivial concept but can be made
easier through visualisation, for example through graphs
and binary trees, or solving popular puzzles like Sudoku or
Solitaire. Backtracking together with heuristics helps with
particularly hard problems where enumeration (considering
every possibility) is not practical. Understanding of heuristics
leads us to the solutions that work but we might suspect are
not the best; in other words, they satisfy all constraints but are
not optimal. Data mining refers to a search for patterns in a
set of data. Efficient data mining can utilise heuristics to find
patterns; for example, an antivirus program scans all files on a
computer looking for virus signatures (patterns); by scanning
sensitive system files first, or the Downloads folder, the
antivirus program can improve its chances of finding a virus –
by using previous knowledge of where viruses tend to enter
the system. Visualisation is another way of looking for patterns
and the use of infographics and sophisticated graphing theory
makes data mining much easier.

Thinking Conceptually

7

Speaking of large sets of data, as an algorithm has to
deal with increasing volume of data, it might slow down
disproportionately with the increase in data volume. This
needs to be predicted with performance modelling before
there is a problem. The use of pipelining identifies which
processing stages can be carried out concurrently and which
ones can’t.

Santa’s Dirty Socks (Computer science unplugged,
http://csunplugged.org/divideAndConquer) is another way to
illustrate an algorithm.

Rosettacode.org has implementations of most algorithms in
different programming languages, so pupils can try a variety
of competing algorithms and time them to see how efficient
they are.

Thinking Conceptually

http://csunplugged.org/divideAndConquer

8

Thinking Contextually

Activity 1: Divide and conquer Resources

Task A: How does Quicksort use the so-called divide and conquer strategy?

[Solution]

Quicksort uses a pivot to split/move the data into smaller parts, the ones larger than pivot get moved to the part above the
pivot, the ones that are lower get moved below pivot, and these parts which are recursively further split into smaller parts, thus
avoiding making comparisons between all the list items.

[End solution]

Task B: Using RosettaCode.org site find Quicksort implementation in your favoured language. Copy it out and supply with
annotations that explain what each line does and especially how recursion makes it possible.
(http://rosettacode.org/wiki/Sorting_algorithms/Quicksort is available under GNU Free Documentation License 1.2.)

[Solution using Python]

def Quicksort(arr): #start a recursive function with unsorted array passed in

 less = [] #empty list for the less-than-pivot values

 pivotList = [] #empty list for the sorted values

 more = []#empty list for the less-than-pivot values

 if len(arr) <= 1: #terminating condition of an unsorted array #having a length of 1

 return arr #terminates the function and the recursion

 else:

 pivot = arr[0] #set the pivot value to the first array #element

 for i in arr: #iterate through the array

 if i < pivot:#compare each element to the pivot

 less.append(i)#if value is smaller, move to the #lesser sub-array

 elif i > pivot:#if element is larger than the pivot

 more.append(i)#move to the larger sub-array

http://rosettacode.org/wiki/Sorting_algorithms/Quicksort
http://rosettacode.org/wiki/Sorting_algorithms/Quicksort

9

Activity 1: Divide and conquer Resources
 else:#if element equals to pivot

 pivotList.append(i) #add to sorted sub-array

 less = Quicksort(less) #divide and conquer via recursion

#this will return the sorted sub-array of items smaller than pivot

 more = Quicksort(more) #divide and conquer via recursion

#this will return the sorted sub-array of items larger than pivot

 return less + pivotList + more #combines the sub-arrays back

a = [4, 65, 2, -31, 0, 99, 83, 782, 1]#set up the unsorted list

b = Quicksort(a) #assign the sorted version of a to b

print(b)#print b

[End solution]

Thinking Contextually

10

Activity 2: Backtracking Resources

Task A: After looking at the definition of computational ‘backtracking’, put the definition in plain English terms and identify a list of
three real-life (non-computing) applications of backtracking.

[Solution]

Backtracking is a step in solving a computing problem after all possibilities have been identified, for example all combinations of
a chess move. Some of these possibilities can be eliminated if checked against a constraint.

Real-life application 1: Answering multiple-choice questions – they rely on elimination of first, obviously wrong alternatives,
and then once the options are narrowed, eliminating the options that are true some times (but not all the time), living the
only true answer.

Real-life application 2: Police detectives compile a list of suspects and then eliminate those against a constraint which could be
an alibi or the lack of a motive.

Real-life application 3: Employers recruiting new workers have a stack of CVs to go through. By setting a constraint (e.g. an
experience with a certain machine), they can eliminate a whole subset of applicants.

Could also consider: Navigating a maze, performing genetic selection – creating a dog breed with particular attributes, applying
‘gut feelings’ (e.g. this doesn’t look right, too good to be true, just run), behavioural experiments.

[End solution]

Task B: Which computational problems can assisted through visualisation?

[Solution]

Binary search can be helped by constructing a binary tree.

[End solution]

Binary search of a sorted list – if a central array element (pivot) is larger than our criteria, we can eliminate the whole half of the array.

Thinking Contextually

11

Activity 3: Visualising data and data mining Resources

Pilot users were asked to rate the new interface for the upcoming update of the office software which was meant to address
the complaints that the previous version was confusing the novices. The users who participated in the study were asked two
questions:

‘On the scale of 1–10 (where 1 is unusable and 10 is fully usable without training or reading the manual) rate the ease of use of
the interface’.

‘On the scale of 1–10 (where 1 is not comfortable with computers at all and 10 is expert) rate the level of your general computer
knowledge.’

The software supplier is trying to get a sense of how the level of experience correlates with the perception of the new interface.

The responses were as follows:

Name Rating of
Interface

Level of
Computer
Experience

Jack 2 1

Bill 6 5

Norma 8 6

Gulchita 9 8

Aron 5 6

Amir 1 2

Thinking Contextually

12

Activity 3: Visualising data and data mining Resources

Task: Develop a program that plots the responses, so that a visual correlation can be established (correlation is stronger when
data points are arranged in a narrow cloud and is weaker when that cloud is rounder). You can use this diagram as a guide:

Thinking Contextually

13

Activity 3: Visualising data and data mining Resources

[Solution]

Learners can even use Scratch if Turtle or Small Basic is not available.

They need to work out the algorithm for drawing the axis (optional) and plotting the dots. The dots look better to the casual user
if they have labels on them, for example respondents’ names and scores.

In this solution, for simplicity, three arrays were used, instead of a 2d array. The arrays hold respondents’ names, rating of the new
interface and level of computer experience, respectively.

#set up actual data

names=[“Jack”,”Bill”,”Norma”,”Gulchita”,”Aron”,”Amir”]

iface=[2,6,8,9,5,1]

exper=[1,5,6,8,6,2]

scale1=40 #set up spacing between the dots

#set up the graphics via the turtle module

import turtle

s=turtle.Screen()

s.setworldcoordinates(0,0,500,500)#rescale to avoid going off screen

Thinking Contextually

14

Activity 3: Visualising data and data mining Resources
a=turtle.Turtle(); a.pu()

#draw vertical axis

a.setpos(0,0); a.pd(); a.setheading(90)

for j in range(0,11):

 a.dot(5,”black”)

 a.write(j,font=(“Arial”,9),align=”right”)

 a.fd(40)

#draw horizontal axis

a.setpos(0,0); a.pd(); a.setheading(0)

for j in range(0,11):

 a.dot(5,”black”)

 a.write(j,font=(“Arial”,9),align=”right”)

 a.fd(40)

a.pu()

for i in range(len(names)):

 a.setpos(iface[i]*scale1,exper[i]*scale1)

 a.tilt(45)

 a.dot(5,”red”)

 a.write(“ “.join([names[i],”\nInterface: “,str(iface[i]),”; Experience: “,

 str(exper[i])]),move=False,font=(“Arial”,10),align=”left”)

s.exitonclick()

[End solution]

Thinking Contextually

15

Activity 4: Shuffling a list Resources

Task: Given this list, how would you shuffle it to randomise the position of the elements? (Elements must be unchanged.)

ar=[5,2,8,9,5,7,3]

[Solution]

There are multiple approaches to designing this algorithm but the simplest approach is to ‘pop’ (remove) elements from random
indices and add them to the end of the list – just like the process of real-life card shuffling. First, we can see how to do it once,
then extend to a loop.

#how to shuffle these numbers?

print(ar)

import random

#shuffle once

a=ar.pop(random.randint(0,len(ar)-1))

ar.append(a)

Thinking Contextually

16

Activity 4: Shuffling a list Resources
print(ar)

now, let’s shuffle it x times:

ar = [5,2,8,9,5,7,3]

#shuffle 20 times

for i in range(20):

 a=ar.pop(random.randint(0,len(ar)-1))

 ar.append(a)

 print(ar)

[7, 3, 8, 5, 5, 9, 2]

[7, 3, 8, 5, 5, 9, 2]

[7, 3, 8, 5, 5, 2, 9]

[7, 3, 8, 5, 5, 2, 9]

[7, 3, 8, 5, 2, 9, 5]

[7, 3, 8, 2, 9, 5, 5]

[7, 3, 2, 9, 5, 5, 8]

[7, 3, 9, 5, 5, 8, 2]

[7, 3, 9, 5, 8, 2, 5]

[7, 3, 5, 8, 2, 5, 9]

[7, 3, 5, 8, 2, 5, 9]

[End solution]

Thinking Contextually

17

Activity 1: Divide and conquer.

Task A: How does Quicksort use the so-called divide and conquer strategy?

Task B: Using RosettaCode.org site find Quicksort implementation in your favoured language. Copy it out and
supply with annotations that explain what each line does and especially how recursion makes it possible.
(http://rosettacode.org/wiki/Sorting_algorithms/Quicksort, available under GNU Free Documentation License 1.2.)

Activity 2: Backtracking.

Task A: After looking at the definition of computational ‘backtracking’, put the definition in plain English terms and
identify a list of three real-life (non-computing) applications of backtracking.

Task B: Which computational problems can be assisted through visualisation?

Activity 3: Visualising data and data mining.

Pilot users were asked to rate the new interface for the upcoming update of the office software which was meant to
address the complaints that the previous version was confusing the novices. The users who participated in the study
were asked two questions:

‘On the scale of 1–10 (where 1 is unusable and 10 is fully usable without training or reading the manual) rate the
ease of use of the interface’

‘On the scale of 1–10 (where 1 is not comfortable with computers at all and 10 is expert) rate the level of your
general computer knowledge.’

Learner resource 1.1

http://rosettacode.org/wiki/Sorting_algorithms/Quicksort

18

The software supplier is trying to get a sense of how the level of experience correlates with the perception of the
new interface.

The responses were as follows:

Name Rating of Interface Level of Computer Experience

Jack 2 1

Bill 6 5

Norma 8 6

Gulchita 9 8

Aron 5 6

Amir 1 2

Learner resource 1.1

19

Task: Develop a program that plots the responses, so that a visual correlation can be established (correlation is
stronger when data points are arranged in a narrow cloud and is weaker when that cloud is rounder). You can use
this diagram as a guide:

Activity 4: Shuffling a list.

Task: Given this list, how would you shuffle it to randomise the position of the elements? (Elements must be
unchanged.)

ar = [5,2,8,9,5,7,3]

Learner resource 1.1

OCR Resources: the small print
OCR’s resources are provided to support the teaching of OCR specifications, but in no way constitute an endorsed teaching method that is required by the Board and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held
responsible for any errors or omissions within these resources. We update our resources on a regular basis, so please check the OCR website to ensure you have the most up to date version.

© OCR 2015 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work.

Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

We’d like to know your view on the resources we produce. By clicking on the ‘Like’ or ‘Dislike’ button you can help us to ensure that our resources work for you. When the email template pops up please add
additional comments if you wish and then just click ‘Send’. Thank you.

If you do not currently offer this OCR qualification but would like to do so, please complete the Expression of Interest Form which can be found here: www.ocr.org.uk/expression-of-interest

http://www.ocr.org.uk/expression-of-interest
mailto:resources.feedback%40ocr.org.uk?subject=I%20liked%20the%20OCR%20A%20Level%20Computer%20Science%2C%20Delivery%20Guide%2C%20Computational%20Computational%20Techniques
mailto:resources.feedback%40ocr.org.uk?subject=I%20disliked%20the%20OCR%20A%20Level%20Computer%20Science%2C%20Delivery%20Guide%2C%20Computational%20Computational%20Techniques

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored.

©OCR 2015 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England.
Registered office 1 Hills Road, Cambridge CB1 2EU. Registered company number 3484466. OCR is an exempt charity.

OCR customer contact centre
General qualifications
Telephone 01223 553998
Facsimile 01223 552627
Email general.qualifications@ocr.org.uk

mailto:general.qualifications%40ocr.org.uk?subject=

	OCR A Level Computer Science Delivery Guide
	Contents
	Introduction
	Curriculum Content
	Thinking Conceptually
	Thinking Contextually
	Learner Resources

	Introduction
	Curriculum Content
	Content (from A level)

	Thinking Conceptually
	Common misconceptions or difficulties students may have

	Thinking Contextually
	Activity 1: Divide and conquer
	Task A: How does quicksort use the so-called divide and conquer strategy?

	Activity 2: Backtracking
	Activity 3: Visualising data and data mining
	Activity 4: Shuffling a list

	Learner resource 1.1
	Activity 1: Divide and conquer.
	Activity 2: Backtracking.
	Activity 3: Visualising data and data mining.
	Activity 4: Shuffling a list.

	See page 17:
	Button 246:
	See page 19:

