

GCE

Electronics

Unit **F611:** Simple Systems

Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

Question	Expected answer	Mark	Additional guidance
1a	EOR gate/XOR gate/ExOR-gate/Exclusive-OR gate	1	
1b	АВС		
	0 0 0		
	0 1 1		
	1 0 1		
	1 1 0		
	all combinations of A and B	1	
	C correct	1	
1c	$C = \overline{A} \cdot B + A \cdot \overline{B}$	1	
1d	To turn LED off make switch by bed same as state of switch by door (wtte)	1	Full statement of how to turn LED off
	To turn LED on make switch by bed opposite to state of switch by door (wtte)	1	Full statement of how to turn LED on
			If one condition for off and one condition for on [1]

Question	Expected answer	Mark	Additional guidance
2a	5-2.2=2.8 V (Correct voltage across R)	1	
	2.8/0.015=187 Ω correct use of Ohm's law and conversion	1	2.2/0.015= 147 Ω for [1]
	from mA		190 Ω [2]
2b	Zero current for all voltages < 0V	1	
	Line goes through 15 mA , 2.2 V	1	
	Line at zero current from 0 V to around 2 V (1.5 – 2.2V) then	1	Do not award mark if saturates at 15 mA (i.e. there should be
	rises from zero in current (ΔV<0.5 V)		no horizontal line at 15 mA)
2c	LED glows (and stays glowing)	1	No mark if answer indicates LED goes off
	Max 3 from:	3	
	Capacitor charges instantly		No mark if answer indicates slow charging
	Input A to NOT gate high		
	Output B from NOT gate low		
	LED forward biased		
2d	0.7 RC used (EOR)	1	
	Correct answer	1	14.7 s [2]

Question	Expected answer	Mark	Additional guidance
2e	A goes to 5 V at 10 s A stays 5 V between 10 s and 20 s A exponential decay from 20 s to 50s (by eye) A goes through 2.5 V, 35 s (±5 s) B 5V at start goes low from 10s to when A is at 2.5 V and then goes high	1 1 1 1	switch switch pressed released A/V 0 10 20 30 40 50 time/s B/V 0 10 20 30 40 50 time/s

Question	Expected answer	Mark	Additional guidance
3a	Correct MOSFET symbol	1	
	Connected in series with speaker across power supply	1	
	Drain to speaker, Source to 0 V.	1	
	Gate to H	1	
	All names of terminals correct	1	
3b	To provide enough current for the speaker Because the logic gate cannot provide enough current	1 1	Allow to amplify the current [1]
3c	T=1/3000=3.33x10 ⁻⁴ s Evidence of correct rule T=0.5RC R=2T/C=2x3.33x10 ⁻⁴ /4.7x10 ⁻⁹ =1.42x10 ⁵ =140 kΩ	1 1 1	140 kΩ [3]
3d	Thermistor symbol drawn correctly	1	4

Question	Expected answer	Mark	Additional guidance
3e	When hot:	5	
	F=0.7V		
	G = 5V		
	H =0V so speaker off		
	When cold:		
	G oscillates so speaker makes a sound		
	Diode in reverse bias		

Question	Expected answer	Mark	Additional guidance
4a	1^{st} expression $R = \overline{E} + F$	1	
4b	2^{nd} expression $Q = B \cdot (\overline{A} + \overline{B})$	1	
4c	3^{rd} expression $P = (\overline{D} + D) \cdot \overline{C}$	1	
4d	3^{rd} expression $Q = \overline{\overline{A} \cdot \overline{B} + A}$	1	

Question	Expected answer	Mark	Additional guidance
5a	Reverse bias zener	1	
	When the voltage across the zener reaches 2.7 V a current		
	flows (wtte)	1	
	The rest of the voltage is dropped across the 2.2k Ω resistor /		Allow acts as pull up resistor OR limits current (wtte)
	sources current from 15 V rail	1	
5b	Voltage across resistor = 15 – 2.7 = 12.3 V	1	Accept 5.6 mA [2]
	12.3/2200=0.0056 A (no ecf)	1	
5c	Resistance depends on light intensity	1	
	Resistance falls as light intensity increases	1	
5d	$R_T=27+7=34 \text{ k}\Omega$	1	
	I=15/34000=4.41x10 ⁻⁴ A	1	
	V=4.41x10 ⁻⁴ x7000=3.1 V	1	
5e	[Inverting terminal at 2.7 V and non-inverting at 3.1 V so] non-		
	inverting A > inverting B	1	
	So output of op amp 13 V	1	
	Diode forward biased	1	
5f	$I = 12.3/27000=4.56x10^{-4}$ A (ecf from 5b with evidence of	1	5.9 kΩ [2]
	subtraction)		
	$R = 2.7/4.56 \times 10^{-4} = 5900 \Omega = 5.9 \text{ k}\Omega$	1	

Question	Expected answer	Mark	Additional guidance
5g	Max 4 from: Bulbs glow regardless of polarity. When the output of the op amp is -13V [light intensity is high] bulb does not glow no current flows because diode is reverse biased	4	
5h	Voltage across bulb = 13-0.7 = 12.3 V 2/12.3=0.16 A (ecf)	1	0.16 A [2]
5i	BAT43 (ecf from h)	1	

Question	Expected answer	Mark	Additional guidance
6a	$Q = M \cdot (J + K)$	1	
	$Q = \overline{J} \cdot \overline{K} \cdot M + J \cdot \overline{K} \cdot M + \overline{J} \cdot K \cdot M$		
6b	One term correct Circuit functions as TT	1 1	K M
6c	Switch from K to 5 V	1	Allow pull up resistor with push to break switch
	Resistor from K to 0 V	1	

Question	Expected answer	Mark	Additional guidance
7a	Make it <u>easier/simpler(wtte)</u> to analyse the operation of the system	1	
7b	Two NAND gates with feedback from output to 1 input Capacitor connects first NAND to second NAND (or NOT) Resistor at least 1 k Ω from second NAND input to 0 V Use of 0.7RC used to give correct R & C (21 s)	1 1 1	

Question		Ex	pected	d answ	er	Mark	Additional guidance
8a	E = A					1	ECF for 2 nd and 4 th marks
	$F = \overline{\overline{A} \cdot B}$					1	
	G = B + C					1	
	$H = (\overline{A} \cdot B) \cdot (B + 0)$	21				1	Insist on parentheses around OR function (answer should
	$\mathbf{H} = (\mathbf{A} \cdot \mathbf{B}) \cdot (\mathbf{B} + \mathbf{C})$	J)					be unambiguous)
8b							
		Ε	F	G	Н		
		1	1	0	0		
		1	1	1	1		
		1	0	1	0		
		1		1			
		0	1	0	0		
		0	1	1	1		
		0	1	1	1		
		0	1	1	1		
	1 mark for each o	orrect c	olumn	(ecf H f	rom F & G)	4	

Question	Expected answer	Mark	Additional guidance
8c	NOT gate equivalent between A and E OR gate equivalent between B, C and G AND gate equivalent between F, G and H NAND gate between E, B and F and circuit correctly arranged (ecf)	1 1 1 1	A B B G No ecf from a
8d	One from: Fewer chips needed because multiple gates per chip Cheaper to mass produce one gate type	1	Allow saves space

Quality of Written Communication

- The candidate expresses complex ideas extremely clearly and fluently. Sentences and paragraphs follow on from one another smoothly and logically. Arguments are consistently relevant and well structured. There will be few, if any, errors of grammar, punctuation and spelling.
- The candidate expresses straightforward ideas clearly, if not always fluently. Sentences and paragraphs may not always be well connected. Arguments may sometimes stray from the point or be weakly presented. There may be some errors of grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.
- The candidate expresses simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weaknesses in these areas.
- 0 The language has no rewardable features.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

PART OF THE CAMBRIDGE ASSESSMENT