

GCE

Chemistry A

Unit F325: Equilibria, Energetics and Elements

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Meaning	
Answers which are not worthy of credit	
Statements which are irrelevant	
Answers that can be accepted	
Words which are not essential to gain credit	
Underlined words must be present in answer to score a mark	
Error carried forward	
Alternative wording	
Or reverse argument	
	Answers which are not worthy of credit Statements which are irrelevant Answers that can be accepted Words which are not essential to gain credit Underlined words must be present in answer to score a mark Error carried forward Alternative wording

C	Questi	ion	Answer	Marks	Guidance
1	1 (a) Formation of one mole of a(n ionic) compound ✓		2	IGNORE 'Energy needed' OR 'energy required'	
			from its gaseous ions ✓		For ' <i>compound</i> ', ALLOW : lattice, crystal, substance, solid
			IGNORE standard conditions		Special case: 1 mark for gaseous ions ONLY 'Formation of 1 mole of compound from 1 mole of gaseous ions.' Duplicate 1 mole is a CON for 1st marking point
1	(b)		 For ALL marking points, assume the following: For 'ions', ALLOW 'atoms', e.g. Na has a large For Mg²⁺, Na⁺, Br⁻ and Cl⁻, ALLOW symbols: e.g. Mg, Na ALLOW names: e.g. magnesium, 	ger (atom a, Br and sodium,	,
			DO NOT ALLOW molecules IGNORE idea of	close pac	cking of ions IGNORE electronegative

Question	Answer	Marks	Gui	dance
	Comparing cation size AND charge (ORA based on Na ⁺)	3	ALLOW reverse argument thro	oughout (ORA)
	Mg ²⁺ is smaller AND Mg ²⁺ has a greater charge OR Mg ²⁺ has a greater charge density ✓		For 'greater charge' part of ma ALLOW Mg ²⁺ AND Na ⁴ ALLOW Mg is 2+ AND	seen anywhere
	Comparing of anion size (ORA based on Cl⁻) Br⁻ is larger		IGNORE just Mg ²⁺ is small	comparison required
	OR Br [−] has a smaller charge density ✓		IGNORE just Br⁻ is large	comparison required
	Comparing cation ⇔ anion attraction Mg ²⁺ has stronger attraction		ALLOW pull for attraction	
	AND		ALLOW 'attracts with more fo	rce' for greater attraction
	Cl [−] has stronger attraction ✓		BUT IGNORE just 'greater f	orce' (could be repulsion)
			OR comparison of bond streng	th/energy to break bonds
	IGNORE 'nuclear' attraction			
			IGNORE comparisons of numb	pers of ions

Question	Answer	Marks	Guidance
1 (c) (ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2433 (kJ mol ⁻¹) award 2 marks 	2	For alternative answers, ALLOW ECF See list below for marking of answers from common errors ALLOW for 1 mark: +2433 wrong sign -2321 +112 used instead of 2 × 112 -2758 -325 used instead of 2 × -325 -3733 wrong sign for 2 × 325 -1385 wrong sign for 524 -2141 wrong sign for 146 -1985 wrong sign for 2 × 112 -957 wrong sign for 738 +469 wrong sign for 1451 Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +461 instead of +416
	Total	13	

(Question	Answer	Marks	Guidance
2	(a)	positive OR + AND solid forms liquid OR liquid has more disorder ✓	3	For 'liquid has more disorder': ALLOW liquid has more ways of arranging energy/ more freedom/ more random molecules
		positive OR + AND gas (H₂) forms OR Mg dissolves/disappears ✓		ASSUME gas is H ₂ unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. CO ₂) IGNORE liquid forms IGNORE equation with state symbols Response should communicate why entropy increases
		negative OR – AND 9 mol gas form 4 mol gas OR forms 5 fewer mol of gas ✓		Numbers and gas are essential IGNORE 'forms fewer moles of gas' For mol, ALLOW molecules IGNORE numbers around equation Treated as rough working

2(b)FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 185 (J K ⁻¹ mol ⁻¹) award 2 marks2	
Conversion of °C to K AND substitution of values into $\Delta G = \Delta H - T\Delta S$ $-1041 = -907 - 723 \times \Delta S \checkmark$ Calculation of ΔS AND conversion to $J K^{-1} mol^{-1}$ $\Delta S = \frac{1041 - 907}{723} \times 1000 = \frac{134}{723} \times 1000$ $= 185$ OR $185.3 (J K^{-1} mol^{-1}) \checkmark$ ALLOW 3 SF up to calc value of 185.3388658 correctly rounded	Conversion to J may be carried out at start but no mark JUST for this conversion ALLOW ECF ONLY from use of values from question: (-)907 AND (-)1041 AND 450/723 COMMON ERRORS -185 wrong sign 1 mark 0.185 no conversion from kJ to J 1 mark 1.85 × 10 ⁻⁴ ÷ by 1000 instead of × 1 mark 298/297.8 (calc 297.7 recurring) Use of 450 °C instead of 723 K 1 mark -2694 wrong sign for 1041 1 mark 2694 wrong sign for 907 1 mark ±4329 Wrong sign AND 450°C 0 marks

Question	Answer	Marks	Guidance
2 (c)	Signs of ΔH and ΔS ΔH is positive AND ΔS is positive \checkmark	3	FULL ANNOTATIONS MUST BE USEDALLOW $\triangle H$ is endothermic for $\triangle H$ is positive
	T∆ S and temperature 'Value of' T ∆ S increases with temperature \checkmark		IGNORE sign of $T\Delta S$ (treated as $ T\Delta S $) i.e. ALLOW $T\Delta S$ becomes more/less positive OR $T\Delta S$ becomes more/less negative IGNORE ΔS increases with temperature
	FeasibilityAt high temperatures, ΔG is -ve OR $\Delta G < 0$ ANDAt low temperatures, ΔG is +ve OR $\Delta G > 0$		ONLY award feasibility mark if signs of ΔH and ΔS are correct, i.e. ΔH +ve AND ΔS +ve (1st marking point)
	OR $\Delta H - T\Delta S$ decreases with (increasing) temperature OR $\Delta H - T\Delta S$ from +ve to –ve with (increasing) temperature \checkmark OR the idea: As temperature increases, $T\Delta S$ outweighs ΔH to make $\Delta G < 0$		ALLOW $\Delta H - T\Delta S$ for ΔG , e.g. At high temperatures, $\Delta H - T\Delta S < 0$ OR $\Delta H < T\Delta S$ AND At low temperatures, $\Delta H - T\Delta S > 0$ OR $\Delta H > T\Delta S$
	Total	8	

F325

0	Question			Marks	Additional guidance	
3	(a)	NO: 2 /Second AND H ₂ : 1 /First AND Overall: 3 /Third	√ t		1	
3	(b)	rate × 125 ✓			1	DO NOT ALLOW just 'increases by 5 and then by 25 / 5^2 OR increases by 5^3
3	(c)	FIRST, CHECK THE AN IF answer = 7.59 × 10 ⁴ a THEN IF units are dm ⁶ r <i>Initial working</i> $k = \overline{(3.24 \times 10^{-2})^{-1}}$ OR 75858.31764 <i>3 SF and standard form</i> = 7.59 × 10 ⁴ \checkmark <i>units:</i> dm ⁶ mol ⁻² s ⁻¹ \checkmark	ward 2 marks nol ⁻² s ⁻¹ , award $\frac{4.34 \times 10^{-2}}{(10^{-3})^2 \times 5.45 \times 10^{-3}}$	1 further mark	3	FULL ANNOTATIONS MUST BE USED NO ECF from incorrectly rearranged k expression ALLOW mol ⁻² dm ⁶ s ⁻¹ OR any order DO NOT ALLOW other units from incorrect k expression (Rate equation supplied on paper – not derived from data)
3	(d)	Change	Effect on rate	Effect on k	2	
		Increase in pressure	increases	none		ALL boxes are 'increases' EXCEPT top right is 'none'.
		Increase in temperature	increases	increases		
		Mark by column :	\checkmark	\checkmark		

C	Questio	n Expected answers	Marks	Additional guidance
3	(e)	Overall equation must be sum of step 1 and step 2	2	
		step 1: $H_2(g) + 2 NO(g) \rightarrow N_2O(g) + H_2O(g) \checkmark$		IGNORE any state symbols
		overall: $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g) \checkmark$		For other possible correct responses, contact Team Leader
		NO ECF for from incorrect step 1 equation		
		Total	9	

C	Questi	ion	Answer	Marks	Guidance
4	(a)	(i)	Note: Examples must be for V, not other d block elements	4	FULL ANNOTATIONS MUST BE USED
			d block element: (3)d is highest energy sub-shell/orbital ✓		DO NOT ALLOW highest energy shell
			Transition element: has an ion with incomplete/partially-filled d sub-shell/orbital ✓		
			V 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ² ✓ full electron configuration required		ALLOW 4s before 3d, ie $1s^22s^22p^63s^23p^64s^23d^3$ ALLOW upper case D, etc and subscripts, e.g. [Ar]4S ₂ 3D ₈
			V ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ ✓ full electron configuration required		DO NOT ALLOW USE OF [Ar] for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ for configuration of V and V ²⁺ ALLOW electron configuration with 4s ⁰
4	(a)	(ii)	$VO_3^- + 6 H^+ + 3 e^- \longrightarrow V^{2+} + 3 H_2O \checkmark$ $Zn \longrightarrow Zn^{2+} + 2 e^- \checkmark$	3	ALLOW electron conliguration with 4s ALLOW multiples
			$Z\Pi \longrightarrow Z\Pi + Ze V$		NO ECF from incorrect half equations
			$2 \operatorname{VO_3}^- + 12 \operatorname{H}^+ + 3 \operatorname{Zn} \longrightarrow 2 \operatorname{V}^{2+} + 6 \operatorname{H_2O} + 3 \operatorname{Zn}^{2+} \checkmark$		ALLOW multiples, e.g. $VO_3^- + 6 H^+ + 1\frac{1}{2} Zn \longrightarrow V^{2+} + 3 H_2O + 1\frac{1}{2} Zn^{2+}$
			Multiples of this equation are the ONLY correct answer		

(Questi	ion	Answer	Marks	Guidance
4	(b)	(i)	Pt: Pt^{2+} OR +2/2+ AND Cl: $2 \times Cl^{-}$ OR 2×-1 OR $2 Cl^{-}/Cl$ with oxidation number $-1 \checkmark$	1	 DO NOT ALLOW response in terms of 'Cl₂'or 'Cl molecule', rather than Cl⁻ DO NOT ALLOW 'charges cancel' without the charges/oxidation numbers involved being stated DO NOT ALLOW if NH₃ shown to have charge
4	(b)	(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	IGNORE any charge, i.e. Pt ²⁺ OR Cl [−] , even if wrong Bonds MUST go to N of to NH ₃ IGNORE labelled bond angles (even if wrong) DO NOT ALLOW any structure that cannot be in one plane If ligands are orientated correctly in <i>cis</i> AND <i>trans</i> , but connectivity to N is poor ALLOW 1 mark for two diagrams ALLOW coordinate bonds shown on diagrams provide that they start from a lone pair on ligands
4	(b)	(iii)	<i>cis</i> -platin binds to DNA (of cancer cells) OR <i>cis</i> -platin stops (cancer) cells dividing/replicating ✓	1	ALLOW cis-isomer: cis is essential IGNORE simply 'cis-platin used in cancer treatment'

Question	Answer	Marks	Guidance
4 (c)		7	FULL ANNOTATIONS MUST BE USED ALLOW equilibrium signs in all equations IGNORE state symbols IGNORE an incorrect formula for an observation
	Colour of $Co^{2+}(aq) OR [Co(H_2O)_6]^{2+}$ 1 mark Pink solution seen at least once AND not contradicted \checkmark		ALLOW 'Co ²⁺ (aq) is pink' or similar wording
	REACTION OF Co ²⁺ with NaOH(aq) 3 marks		(aq) OR [Co(H ₂ O) ₆] ²⁺ is equivalent to 'solution' DO NOT ALLOW pink precipitate
	Correct equation Co ²⁺ (aq) + 2OH [−] (aq) → Co(OH) ₂ (s) ✓ state symbols not required		ALLOW $[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2(H_2O)_4 + 2H_2O$ ALLOW 'hybrid' equations, e.g. $Co^{2+} + 2NaOH \rightarrow Co(OH)_2 + 2Na^+$
	Observation blue precipitate/solid ✓ Type of reaction		$[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow Co(OH)_2 + 6H_2O$ ALLOW any shade of blue IGNORE changes in colour over time DO NOT ALLOW 'precipitate reaction'
	precipitation ✓		IF equation with $[Co(H_2O)_6]^{2+}$ has been shown, ALLOW acid–base OR neutralisation
	REACTION OF Co ²⁺ WITH HCl(aq) 3 marks		
	Correct equation $[Co(H_2O)_6]^{2+} + 4CI^- \longrightarrow [CoCl_4]^{2-} + 6H_2O \checkmark$		ALLOW $\operatorname{CoCl_4^{2-}}$ i.e. no brackets OR $\operatorname{Co(Cl)_4^{2-}}$ ALLOW $[\operatorname{Co(H_2O)_6}]^{2+} + 4\operatorname{HCl} \longrightarrow [\operatorname{CoCl_4}]^{2-} + 6\operatorname{H_2O} + 4\operatorname{H^+}$ IGNORE $\operatorname{Co^{2+}} + 4\operatorname{Cl^-} \longrightarrow \operatorname{CoCl_4^{2-}}$
	Observation blue (solution) ✓		ALLOW any shades of blue DO NOT ALLOW blue precipitate
	Type of reaction ligand substitution ✓		ALLOW ligand exchange

F325	Mark Sch	Mark Scheme		
Question	Answer	Marks	Guidance	
	Total	19		

0	Question		Answer	Marks	Guidance
5	(a)	(i)	partlially dissociates ✓	1	For dissociates, ALLOW ionises
5	(a)	(ii)	$(\mathcal{K}_{a} =) \frac{[H^{+}(aq)[CH_{3}COO^{-}(aq)]]}{[CH_{3}COOH(aq)]} \checkmark$ All species MUST have square brackets	1	ALLOW $[H_3O^+]$ for $[H^+]$ IGNORE $\frac{[H^+]^2}{[C_2H_5COOH]}$ OR $\frac{[H^+][A^-]}{[HA]}$ IGNORE state symbols

(Questi	ion	Answer	Marks	Guidance
5	(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.22, award 2 marks	2	
			$[H^+] = \sqrt{(1.30 \times 10^{-5}) \times (2.85 \times 10^{-2})}$		
			OR 6.09 × 10 ⁻⁴ (mol dm ⁻³) ✓		ALLOW 6.09×10^{-4} to calculator value of $6.086871117 \times 10^{-4}$ correctly rounded
			pH = $-\log 6.09 \times 10^{-4} = 3.22 \checkmark$ <i>Must be from a calculated</i> [H ⁺] NOTE : The marks are ONLY available from attempted use of K_a AND [C ₂ H ₅ COOH]		ALLOW ECF from incorrect [H ⁺] derived from K _a AND [H ⁺] ALLOW use of quadratic equation – gives same answer of 3.22 COMMON ERRORS (MUST be to 2 DP) Mark other errors by ECF
					$pH = 6.43 \ 1 \text{ mark} \\ -\log (1.30 \times 10^{-5}) \times (2.85 \times 10^{-2}) \qquad No \ $ $pH = 3.16 \ 1 \text{ mark} \\ \text{Wrong acid } (K_a = 1.70 \times 10^{-5} \text{) but all else correct}$ $pH = 4.89 \ 0 \text{ marks} \\ -\log(1.30 \times 10^{-5}) = 4.89 \qquad -\log K_a$ $pH = 1.55 \ 0 \text{ marks} \\ -\log(2.85 \times 10^{-2}) = 4.87 \qquad -\log [H^+]$

Mark Scheme

June 2017

C	Questi	ion	Answer	Marks	Guidance
5	(a)	(iv)	$C_2H_5COOH + CH_3COOH \Rightarrow C_2H_5COOH_2^+ + CH_3COO^-\checkmark$	2	ALLOW ECF for 2nd mark if H ⁺ transfer shown other way round, i.e.
			Base 2Acid 1Acid 2Base 11st mark for correct products, $C_2H_5COOH_2^+$ AND CH_3COO^- 2nd mark for correct labels		$\begin{array}{l} C_2H_5COOH \ + \ CH_3COOH \ \rightleftharpoons \ C_2H_5COO^- \ + \ CH_3COOH_2^+ \ \times \\ Acid \ 1 \qquad Base \ 2 \qquad Base \ 1 \qquad Acid \ 2 \ \checkmark \ ECF \\ \end{array}$ $\begin{array}{l} NO \ OTHER \ ECF \\ ALLOW \ A1, \ B1, \ etc \ or \ any \ unambiguous \ labels \end{array}$
5	(b)	(i)	proton/H ⁺ acceptor ✓	1	DO NOT ALLOW OH ⁻ donor
5	(b)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 5.35 (g) award 3 marks $n(Ba(OH)_2) = (250/1000) \times 0.1250 = 0.03125 (mol) \checkmark$ $M(Ba(OH)_2) = 171.3 (g mol^{-1}) \checkmark$ mass = 0.03125 × 171.3 = 5.35 (g) \checkmark NOTE : Answer to two decimal places	3	ALLOW ECF but answer required to two decimal places

(Question		Answer	Marks	Guidance
5	(b)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 13.40 award 3 marks	3	Marks are for correctly calculated values. Working shows how values have been derived.
			$[OH^{-}] = 2 \times 0.1250 = 0.25(0) \text{ (mol dm}^{-3}) \checkmark$ $[H^{+}] = \frac{1.00 \times 10^{-14}}{0.25(0)} \text{ OR } 4(.00) \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$ Subsumes 1st mark $pH = -\log 4.00 \times 10^{-14} = 13.40 \checkmark$		ALLOW by ECF $\frac{1.00 \ ^{-14}}{\text{calculated value of [OH}^{-14}}$ DO NOT ALLOW 13.4 <i>not two decimal places</i>
			Must be from a calculated [H ⁺] pOH variation (also worth 3 marks) $[OH^-] = 2 \times 0.125 = 0.25(0) \pmod{dm^{-3}} \checkmark$ $pOH = -\log 0.25(0) = 0.60 \checkmark$ $pH = 14.00 - 0.60 = 13.40 \checkmark$ Must be from a calculated pOH		COMMON ERRORS for pH13.4 $\checkmark \checkmark$ not 2 DP13.10 $\checkmark \checkmark$ no × 2 for [OH ⁻]13.1 \checkmark no × 2 for [OH ⁻] AND 1 DP only12.80 $\checkmark \checkmark$ ÷2 instead of × 2 for [OH ⁻]0.60 \checkmark 2 × 0.1250 expressed as pH0.90no marks $-log 0.125$

June 2017

Question	Answer		Guidance	
5 (c)	Possible conclusion from mixing C_2H_5COOH and $Ba(OH)_2$ Buffer forms when • acid / C_2H_5COOH is in excess • OR buffer contains C_2H_5COOH AND $C_2H_5COO^-/$ $(C_2H_5COO)_2Ba \checkmark$ Independent of calculations $n(Ba(OH)_2)$ = (100/1000) × 0.1250 = 0.0125 (mol) \checkmark $n(C_2H_5COOH)$ = (200/1000) × 0.324 = 0.0648 (mol) \checkmark Correct calculation showing that C_2H_5COOH is in excess Must use 2 × 0.0125 OR 0.0250 \checkmark Possible calculations could show: • C_2H_5COOH is 0.0398 mol in excess • ratio $n(C_2H_5COOH)/n(Ba(OH)_2 > 2/1)$ • $n(C_2H_5COOH) > n(OH^-)$	4	ORA Buffer does not form when • acid / C_2H_5COOH is not in excess/ Ba(OH) ₂ is in excess • OR buffer does not contains C_2H_5COOH AND $C_2H_5COO^-/(C_2H_5COO)_2Ba \checkmark$ $n(C_2H_5COOH) = 0.0648 - 0.0250 = 0.0398$ ratio $n(C_2H_5COOH) = 0.0648 - 0.0250 = 0.0398$ ratio $n(C_2H_5COOH)/n(Ba(OH)_2) = 0.0648/0.0125 = 5.184/1$ $n(C_2H_5COOH) > n(OH^-) = 0.0648 > 0.0250$	

Question	Answer		Guidance	
5 (d)	Quality of written communication, QWC	5	FULL ANNOTATIONS MUST BE USED	
	 2 marks are available for explaining how the equilibrium system allows the buffer solution to control the pH on addition of H⁺ and OH⁻ (see below) 		Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2	
	• $H_2CO_3 \rightleftharpoons H^+ + HCO_3^- \checkmark$		DO NOT ALLOW HA \Rightarrow H ⁺ + A ⁻ DO NOT ALLOW more than one equilibrium equation.	
	•		ALLOW response in terms of H⁺, A⁻ and HA	
	 H₂CO₃ reacts with added alkali /OH⁻ OR H₂CO₃ + OH⁻ → OR added alkali reacts with H⁺ 		IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.	
	• OR $H^+ + OH^- \rightarrow \checkmark$ Equilibrium \rightarrow right OR Equilibrium $\rightarrow HCO_3^- \checkmark$ (QWC)		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali	
	 HCO₃⁻ reacts with added acid /H⁺ ✓ Equilibrium → left OR Equilibrium → H₂CO₃ ✓ (QWC) 		ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid	
	Total	22		

Question		on	Answer	Marks	Guidance
6	(a)		$(K_{\rm c} =) \frac{[{\rm NH}_3]^2}{[{\rm N}_2] [{\rm H}_2]^3} \checkmark$	1	Must be square brackets IGNORE state symbols

(Question	Answer	Marks	Guidance	
6	(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.0368 dm ⁶ mol ⁻² , award 6 marks IF answer = 0.0368 with incorrect units, award 5 mark	6	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below	
		Equilibrium amounts in mol2 MARKS $n(N_2) = 10.40 - 5.60/2 = 7.6(0)$ (mol) \checkmark $n(H_2) = 22.50 - 1.5 \times 5.60 = 14.1(0)$ (mol) \checkmark			
		Equilibrium concentrations (moles ÷ 5) 1 MARK $N_2 = 7.60/5 = 1.52$ (mol dm ⁻³) AND $H_2 = 14.1/5 = 2.82$ (mol dm ⁻³) AND $NH_3 = 5.60/5 = 1.12$ (mol dm ⁻³) \checkmark		ALLOW ECF from incorrect moles of SO ₂ , O ₂ AND SO ₂ ALL three concentrations required for this mark	
		Calculation of K_c and units 3 MARKS $K_c = \frac{1.12^2}{1.52 \times 2.82^3} \checkmark$		ALLOW ECF from incorrect concentrations or moles (if concentration stage is omitted)	
		$K_{\rm c} = 0.0368 \checkmark {\rm dm^6 \ mol^{-2}} \checkmark$ 3SF required		ALLOW ECF from wrong K_c expression for K_c value and units For units, ALLOW mol ⁻² dm ⁶ DO NOT ALLOW dm ⁶ /mol ²	
		NOTE : If inverted K_c expression used, look back to Q6(a) Then apply ECF with ALL marks being available in 16(b). Expected answer = 27.2		Common errors for K_c 1.47 × 10 ⁻³ missing ÷ 5 to calculate concentrations	
		Expected units = $mol^2 dm^{-6}$		4 marks + units mark (i.e. just one mark dropped) 0.0338	
		See also Common errors		Subtracting 5.60 from initial moles of N_2 and H_2 3 marks + units mark 6.62 × 10 ⁻³	
				Use of initial concentrations of N_2 and H_2 (3 marks + units mark)	
				2.65 × 10 ⁻⁴ Use of initial moles of N_2 and H_2 and no ÷5 for concs (2 marks + units mark)	
		24	1	27.2 Calculated value from inverted K_c 4 marks + units mark for mol ² dm ⁻⁶	

(Question		Answer		Guidance
6	(c)	(i)	K_c is smaller AND (forward) reaction is exothermic OR ∆ <i>H</i> is negative \checkmark	1	Link to ∆ <i>H</i> /exothermic essential ALLOW reverse reaction is endothermic DO NOT ALLOW equilibrium shifts to the right (CON)
6	(c)	(ii)	K_c is the same AND K_c is temperature dependent/only changed by temperature OR K_c is not changed by pressure \checkmark	1	ALLOW <i>K</i> _c is only changed by temperature IGNORE same number of moles on both side
		1	Total	9	

(Quest	ion	Answer	Marks	Guidance
7	(a)	(i)	complete circuit with voltmeter AND salt bridge linking two half-cells ✓ Cr electrode in Cr ³⁺ solution ✓ Pt electrode in solution containing Fe ²⁺ AND Fe ³⁺ ✓ Conditions Units essential (Temperature of) 298 K / 25°C AND (solution concentrations of) 1 mol dm ⁻³ ✓ (may be on diagram)	4	 FULL ANNOTATIONS MUST BE USED circuit shown must be complete, <i>ie</i> must be capable of working salt bridge must be labelled and must dip into both solutions Half cells can be drawn in either order Half cells must show electrodes dipping into solutions ALLOW small gaps in circuit ALLOW 1M and 1 mol/dm³ DO NOT ALLOW 1 mol
7	(a)	(ii)	Cr(s) + 3Fe ³⁺ (aq) \rightarrow Cr ³⁺ (aq) + 3Fe ²⁺ (aq) \checkmark State symbols not required	1	IGNORE pressure (No gases in this cell) IGNORE state symbols ALLOW equilibrium sign providing reactants and products are on correct sides of equation
7	(a)	(iii)	E = 1.51 (V) AND Sign of Cr electrode: – /negative \checkmark	1	IGNORE sign for E
7	(b)		Assume $Cr^{3+} Cr \ OR \ Cr \ half-cell \ unless \ otherwise \ stated.$ [Cr^{3+}] increases $OR > 1 \ mol \ dm^{-3} \checkmark$ Equilibrium (shown in table) shifts to right OR towards $Cr \checkmark$ Electrons are removed/used up/fewer electrons released	3	FULL ANNOTATIONS MUST BE USED ALLOW [Cr ³⁺] more than standard concentration/1 mol dm ⁻³ IGNORE CrCl ₃ reacts Take care: Response may refer to a reverse half equation written by candidate. The equilibrium then shifts to left.
			OR		IGNORE comments about E° changing

C	Question		Answer	Marks	Guidance
			<i>E</i> (for $Cr^{3+} Cr$) is less negative / more positive OR The cell has a smaller difference in <i>E</i> \checkmark		IGNORE just 'cell potential decreases' (in the question)
7	(c)	(i)	$HCOOH(I) \to CO_2(g) + 2H^+ + 2e^-$	1	ALLOW multiples e.g. 2HCOOH(I) \rightarrow 2CO ₂ (g) + 4H ⁺ + 4e ⁻
7	(c)	(ii)	HCOOH is a liquid OR is less volatile AND HCOOH is easier to store/transport/stored more safely OR H ₂ is more explosive/more flammable ✓	1	Assume that 'it' refers to HCOOH ALLOW ORA throughout IGNORE comments about efficiency IGNORE comments about biomass and renewable
7	(d)	(i)	amount MnO ₄ ⁻ used = 0.01500 × $\frac{25.40}{1000}$ = 3.81 × 10 ⁻⁴ (mol) \checkmark amount SO ₃ ²⁻ = 3.81 × 10 ⁻⁴ × 2.5 = 9.525 × 10 ⁻⁴ (mol) \checkmark amount SO ₃ ²⁻ in original 250 cm ³ = 10 × 9.525 × 10 ⁻⁴ = 9.525 × 10 ⁻³ mol \checkmark Mass of Na ₂ SO ₃ in sample = 126.1 × 9.525 × 10 ⁻³ g = 1.20 g \checkmark $n(H_2O) = \frac{2.40 - 1.20}{18.0} = 6.67 × 10^{-2}$ (mol) \checkmark	6	FULL ANNOTATIONS MUST BE USEDIF a step is omitted but subsequent step subsumes previous, then award mark for any missed step Working: at least 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.01500 allow 0.015/0.0150ALLOW ECF at all stagesALLOW ECF at all stagesALLOW M(hydrated sodium sulfite) = $\frac{2.40}{9.525 \times 10^{-3}} = 252 \checkmark$ Molar mass of H ₂ O = 252 - 126.1 = 125.9 ✓

Question	Answer	Marks	Guidance
	$n(Na_2SO_3): n(H_2O) = 9.525 \times 10^{-3}: 6.67 \times 10^{-2} = 1:7$		Number of H ₂ O of crystallisation = $\frac{125.9}{18.0}$ = 7
	$Formula = Na_2SO_3 \cdot 7H_2O \checkmark$		$Formula = Na_2SO_3 \cdot 7H_2O \checkmark$
	Formula is required. 1:7 ratio is insufficient		
(d)	ii) MARK INDEPENDENTLY Except for multiples, equations are only correct answers	3	ALLOW multiples and equilibrium signs throughout IGNORE state symbols throughout
	Overall: 2MnO ₄ ⁻ + 6 H ⁺ + 5 SO ₃ ²⁻ → 2Mn ²⁺ + 5 SO ₄ ²⁻ + 3 H ₂ O ✓		e.g. $MnO_4^- + 3H^+ + 2\frac{1}{2}SO_3^{2-} \rightarrow Mn^{2+} + 2\frac{1}{2}SO_4^{2-} + 1\frac{1}{2}H_2O$
	Half equations: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O \checkmark$		
	SO_3^{2-} + $H_2O \rightarrow SO_4^{2-}$ + $2H^+$ + $2e^- \checkmark$		
	Total	20	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

