

GCE

Mathematics (MEI)

Unit 4773: Decision Mathematics Computation

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

	Juestion	n			Marks	Guidance	
1	(i)		There are 2 w	vays of finishi	ng a path of length $30(n+2)$.	M1	multiplier of 30 not
			Either one "p	erpendicular"	slab added to a path of length $30(n+1)$,	A1	needed in description
			or two "paral	lel" slabs adde	ed to a path of length 30n.	A1	
			So need to ad of length 30 <i>n</i>	ld number of v	vays to make a path of length $30(n+1)$, to the number of ways of making a path	A1	
	(ii)		n	un		M1	relationship correct
	(11)		1	1			terrenter
			2	2		AI	twenty
			3	3			
			4	5			
			5	8			
			6	13			
			7	21			
			8	34			
			9	55			
			10	89			
			11	144			
			12	233			
			13	377			
			14	610			
			15	987			
			16	1597			
			17	2584			
			18	4181			
			19	6765			
			20	10946			

	(iii)	Assume that	at there is a	solution of the f	form $u_n = \lambda$	l^n			B1	
		Then λ^{n+2} :	$=\lambda^{n+1}+\lambda^n$						B1	
		giving λ^2 -	$\lambda - 1 = 0$	B1						
•	(iv)	$\lambda = \frac{1 + \sqrt{5}}{2}$	or $\lambda = \frac{1-1}{2}$	B1						
		Form a line	ear combina	B1						
		Then use ir	B 1							
	(v)	n	un	formula	n	un	formula		B1	
		1	1	1	11	144	144			
		2	2	2	12	233	233			
		3	3	3	13	377	377			
		4	5	5	14	610	610			
		5	8	8	15	987	987			
		6	13	13	16	1597	1597			
		7	21	21	17	2584	2584			
		8	34	34	18	4181	4181			
		9	55	55	19	6765	6765			
		10	89	89	20	10946	10946			
((vi)	20365011	074						B1	
	(vii)	1, 1 and 2							B1	
((viii)	The recurre	ence relatio	n is $u_{n+3} = u_{n+2}$.	$+ u_n$				B1	
		This will no	eed program	nming in Excel a	and draggin	ng down to <i>n</i>	= 50.		B1	
		Gives 122	106 097	-					B1	

	Quest	ion	Answer	Marks	Guidance
2	(a)	(i)	Shortest path	B1	
			from A to F	B1	
		(ii)	that the path leaves A.	B1	
		(iii)	that if the path arrives at B, then it leaves B.	B1	
		(iv)	Shortest path has length 5.	B1	
			Shortest path is A B E C D F	B1	
	(b)	(i)	Max SB+SC st SB<1 SC<4	B1	Could be max DT+ET
			BC<3 CB<3 BD<4 DB<4 BE<1 EB<1 CD<1 DC<1 CE<1 EC<1 EC<1 DE<3 ED<3 DT<1 ET<4	M1 A1	capacities
			ET<4 $SB+CB+DB+EB-BC-BD-BE=0$ $SC+BC+DC+EC-CB-CD-CE=0$ $BD+CD+ED-DB-DC-DE-DT=0$ $BE+CE+DE-EB-EC-ED-ET=0$ end	M1 A1 A1	one correct balance at B and C at D and E

	(ii)	Objective value 5		M1	running LP
		Variable SB S	SC BC CB BD DB BE EB CD DC CE EC DE ED DT ET	A1	
		Value 1	4 0 3 4 0 1 1 1 1 1 0 3 0 1 4		
		Max flow is 5 Flows as indicated, but n	B1		
				M1 A1	graph + interpretation
	(iii)	S BCDET or SBCDE	Т	B1	

Question			Answer										Marks	Guidance			
3	(a)	(i)	Max 150x	x1+50x	x2+250)x3+15	0x4+6	0x5+6	60x6+7	'0x7+3	30x8+1	5x9+7	75x10+	15x11	+50x12	M1A1	
			st 9x1-	st $9x1+10x2+153x3+60x4+15x5+30x6+11x7+32x8+64x9+80x10+6x11+4x12<350$											M1A1		
			end														
			int 12														
		(ii)	Objective value 885										M1	running			
			Variable	x1	x2	x3	x4	x5	хб	x7	x8	x9	x10	x11	x12		
			Value	1	1	1	1	1	1	1	1	1	0	0	1	A1	
			Slack on constraint 200 g														
			All packed	excep	t the c	hange	of clot	hing aı	nd the	waterp	proof c	lothing	5.			B1	no marks at this point for slack
		(iii)	4.1 kg													B1	
		(iv)	Either dele	te x10	from t	he mo	del, reo	luce co	onstrai	nt to 2	.7 kg, a	and ad	d water	proof	clothing back in at	the M1	
			end,														
			or increase	the va	lue of	waterp	proof c	lothing	g.								
			Variable	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	x12		
			Value	1	1	1	1	1	0	1	0	0	1	1	1	A1	
			Slack on co	onstrai	nt	20 g											
			All packed	excep	t fruit,	camer	a and o	change	of clo	thing.						A1	
			Total load	= 3.48	kg											A1	

))	(i)	Max st	150x 9x1+ x1<5 x2<5 x3<5 x4<5 x5<5 x6<5 x7<5 x8<5 x9<5 x10< x11< x12<	1+50x 10x2+ 5555	2+250 -153x3	0x3+15 3+60x4	50x4+6	50x5+6 5+30x6	50x6+7 5+11x7	70x7+3 7+32x8	30x8+1 3+64x9	5x9+7 +80x1	75x10+ 0+6x1	15x11 1+4x1	+50x12 2<1500	B1 B1	RHS changed
		gin 12	2														
	(ii)	Objec	tive v	alue		4275	5									M1	running
		Varia	ble	x1	x2	x3	x4	x5	xб	x7	x8	x9	x10	x11	x12		
		Value	;	5	5	5	5	5	5	5	0	0	0	5	5	A1	
		Slack	on co	onstrai	nt	100	g										
		The p	orter o	carries	all ex	cept ca	ameras	, chan	ges of	clothir	ng and	waterp	proofs.			A1	
		The lo	oad is	14.9 k	g.											A1	

Question	Answer	Marks	Guidance
4 (i)	20	B1	
(ii)	Commentary This compound distribution is difficult to model, so the markscheme might appear to be generous. Most candidates use LOOKUP and nested IF statements, and the maximum number of customers and the maximum number of gifts have been kept low to allow of this. But the approach shown below, using indicator variables for customers, is easier to manage. Image: Colspan="2">Colspan="2"	M1 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1	Use of "=rand()" Use of CDF for customers Valid methodology for sampling valid methodology for a number of gifts CDF for gifts repeated as needed A1 valid methodology for accumulating the correct number of gifts

(iii)	The above simply needs columns I to AU copying down. At the other extreme, less well designed solutions will require 20 hand-generated repetitions.	M1 A1	No marks for sophistication – it is its own reward.
(iv)	Mean should be between 3 and 6.5 ish.	B1	
	Standard deviation between 2 and 3.5 or so.	B1	
	Note: Theoretical answers are		
	$Mean = 2.34 \times 2.06 = 4.8204$		
	$Var = 2.34 \times 0.9164 + 1.4844 \times 2.06^2 = 8.4436$		
	StDev = 2.9058		
(v)	Standard deviation ≈ 2.9	M1	Use of SD
	Require n such that $2 \times \frac{2.9}{1.5} \le 0.1$ i.e. about 3400 repetitions	M1	Use of formula
	$\sqrt{n} = 0.1$, i.e. about 5400 repetitions.	A1	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

