

Mathematics (MEI)

Advanced GCE 4776

Numerical Methods

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

477	76			Mark S	cheme			June	2010
1(i)	<i>x</i> 1 2	LHS 1 0.5	< >	RHS 2 -1	(Change o	f sign implie (or equival			[M1A1]
	r X _r	0 1.5 State or clea	1 1.333333 arly imply co			4 0.355127 nterval (1, 2)	0.347961	6 0.347352	[M1A1] [E1]
(ii)	E.g. $x_{r+1} = \sqrt{3}$ r x_r	8 - 1/ <i>x</i>) 0 1.5	1 1.527525	2 1.531452 4 1.532077	3 1.532 5 1.532087	E.g. x _{r+1} = 0 1.5	3/x - 1/x ² 1 1.5555556 4 1.523326	2 1.515306 5 1.538438	[B1] 3 1.544287 [M1A1] [TOTAL 8]
2(i)	Forward difference: $(0.9996 - 0.9854)/0.2 = 0.071$ Central difference: $(0.9996 - 0.9508)/0.4 = 0.122$ Central difference expected to be more accurate.								[M1A1] [M1A1] [E1]
(ii)	Forward difference maximum:(0.99965 - 0.98535)/0.2 = 0.0715Central difference maximum:(0.99965 - 0.95075)/0.4 = 0.12225								[B1] [B1] [TOTAL 7]
3(i)	<i>r</i> is the relative error (in <i>X</i> as an approximation to <i>x</i>) $X^{n} = x^{n} (1 + r)^{n}$ (1 + r) ⁿ = 1 + nr (provided r is small)								[E1] [M1M1A1]
(ii)	G^2 (= 0.332 929, not required) is about 0.08% smaller than g^2 \sqrt{G} (= 0.795 605, not required) is about 0.02% smaller than \sqrt{g}								[M1A1A1] [TOTAL 7]
4(i)	x 0.2 0.1	sin + tan 0.401379 0.200168	2x 0.4 0.2	error -0.00138 -0.00017	rel error -0.00344 -0.00084	accept:	+ve, +ve -ve, +ve -ve, -ve		[M1A1A1A1]
(ii)	$2 \times 0.2^3 / k = 0.00138$ gives $k = 11.59$ Either of these (or other methods) $2 \times 0.1^3 / k = 0.00017$ gives $k = 11.76$ to suggest $k = 12$								[M1A1] [B1] [TOTAL 7]
5	Data not equa	ally spaced i	n <i>x</i>						[E1]
	f(x) = -10(x - 3)(x - 6) / (1 - 3)(1 - 6) - 12(x - 1)(x - 6) / (3 - 1)(3 - 6) + 30(x - 1)(x - 3) / (6 - 1)(6 - 3) $f(x) = -(x^2 - 9x + 18) + 2(x^2 - 7x + 6) + 2(x^2 - 4x + 3)$ $= 3x^2 - 13x$								[M1A1A1A1] [A1] [A1] [TOTAL 7]

4776

Mark Scheme

6(i) (ii)		<i>M</i> 1.547953 1.563639 1.567619 Dears justified		•	on of last two	o S values, e	e.g.:	М: Т: S:	[M1A1A1] [M1A1] [M1A1] [subtotal 7] [B1]
	last change	in S is -0.000	004; next ch	lange neglig	lidie				[E1] [subtotal 2]
(iii)	h 0.8 0.4 0.2	<i>M</i> error -0.02100 -0.00531 -0.00133	<i>T</i> error 0.04226 0.01063 0.00266		accept col use of oth conventiol	ər sign			[M1A1A1]
	 (A) <i>M</i> errors are about half the <i>T</i> errors so <i>M</i> is twice as accurate as <i>T</i> (B) Errors for both <i>T</i> and <i>M</i> reduce by a factor of 4 as h is halved so the rates of convergence are the same, both second order 								[E1A1] [E1] [A1A1] <i>[subtotal 8]</i> [TOTAL 17]
7(i)	f(0) = 5, f(1)	= -2. (Change	e of sign imp	olies root.)					[M1A1]
	f'(x) = $5x^4 - 8$ hence N-R formula								[M1A1]
	r	0	1	2	3	4			
	<i>x_r</i> differences ratios The ratios of	0.5 f differences a	0.134146	0.638232 0.004086 0.030457 ng (fast) so	5.98E-06 0.001462	0.638238 1.29E-11 2.17E-06 aster than fir	st order		[M1A1A1] [A1] [M1A1] [E1] <i>[subtotal</i> 11]
(ii)	r	0	1	2	3	4			
	x_r f(x_r)	1.4 -0.82176 root is 1.46	1.5 0.59375 correct to 3	1.458054 -0.0747	1.462741 -0.00559	1.46312 5.99E-05			[M1A1A1] [A1]
	The ratios of	differences ratios f differences a	0.1	-0.04195 -0.41946	0.004687 -0.11175 process is fa		st order cond order'		[A1] [M1A1] [E1] [subtotal 8] [TOTAL 19]

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

