

SPECIMEN

GENERAL CERTIFICATE OF SECONDARY EDUCATION GATEWAY SCIENCE

B742/01

Duration: 1 hour 30 minutes

CHEMISTRY B

Unit B742: Chemistry modules C4, C5, C6 (Foundation Tier)

Candidates answer on the question paper A calculator may be used for this paper

OCR Supplied Materials:

None

Other Materials Required:

- Pencil
- Ruler (cm/mm)

Candidate Forename			Candidate Surname			
Centre Number			Candidate Nu	mber		

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- Your quality of written communication is assessed in questions marked with a pencil ().
- The Periodic Table can be found on the back page.
- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 85.
- This document consists of **32** pages. Any blank pages are indicated.

Examiner's Use Only:				
1		11		
2		12		
3		13		
4		14		
5		15		
6		16		
7		17		
8		18		
9				
10				
Total				

Answer all the questions

Section A – Module C4

This question is about the elements in the Periodic Table.
 Look at the list of elements.

argon	calcium
hydrogen	iodine
magnesium	neon
nitrogen	oxygen
potassium	sodium

Answer the questions.

Choose your answers from the list.

Each element can be used once, more than once or not at all.

(a)	Write down the name of the element which has the atomic number of 12 .				
		[1]			
(b)	Write down the name of the element which is a grey solid non-metal at room temperature.				
		[1]			
(c)	Which element has an atom with only five electrons in its outer shell?				
		[1]			
	[Total]	- 21			

2 Beth investigates the thermal decomposition of cobalt carbonate.

Look at the diagram. It shows the apparatus she uses.

She measures the mass of the solid cobalt carbonate before heating.

She also measures the mass of the solid left after heating.

Look at her results.

	mass in grams
solid cobalt carbonate before heating	2.21
solid left after heating	1.39

During the heating the limewater turns milky.

(a)	Explain why there is a change in mass of the solid cobalt carbonate during the heating.	
		[1]
(b)	Explain why the heating of cobalt carbonate is an example of thermal decomposition	
		[1]
(c)	Construct the word equation for the thermal decomposition of cobalt carbonate.	
		. [1]

(d) Beth uses the internet to find out about other metal carbonates.

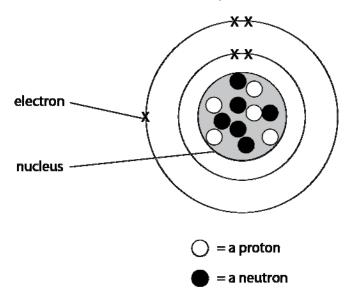
She finds out the temperature needed to decompose different carbonates.

Look at the table. It shows these temperatures.

carbonate	temperature needed to decompose carbonate in °C
copper carbonate	375
iron(III) carbonate	-25
manganese carbonate	500
zinc carbonate	400

[Total: 4
[1
Choose from the carbonates in the table.
Explain which carbonate will decompose without being heated by a Bunsen burner.
Most carbonates need to be heated before they will decompose.

3 Many scientists helped to develop the theory of atomic structure in the early 1900s.


A scientist called Thomson discovered the electron.

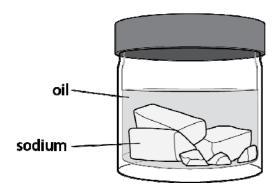
Another scientist called Rutherford had the idea of atoms having a nucleus.

A third scientist called Bohr had the idea of electron shells.

Look at the diagram.

It shows the structure of an atom with a nucleus, electrons and electron shells.

(a) What is the electrical charge on an electron?


Choose from:

		negative	neutral	positive	
	answer			[1]	
(b)	Explain why the nucleus	s of an atom has	s a positive ch	narge.	
				[1]	
(c)	Explain why the atomic	number of this	atom is 5 and	I the mass number is 11.	
				[2]	

(d)	The scientists Thomson, Rutherford and Bohr told other scientists about their ideas about atoms.
	Suggest how and explain why they told other scientists.
	[2]
	[Total: 6]

- 4 This question is about Group 1 elements such as sodium and rubidium.
 - (a) Look at the diagram.

It shows how sodium is stored.

	The sodium is covered with oil.	
	Write down two reasons why sodium must be stored under oil.	
		501
		. [2]
(b)	Group 1 elements, such as sodium, react with water.	
	Sodium hydroxide, NaOH, and hydrogen are made.	
	Construct the balanced symbol equation for the reaction between sodium and water.	
		. [2]

(c) Look at the table. It shows some information about the elements in Group 1.

element	atomic symbol	atomic number	melting point in °C	density in g/cm³	atomic radius in pm
lithium	Li	3	181	0.53	152
sodium	Na	11	98	0.97	182
potassium	К	19	64	0.86	227
rubidium	Rb	37			

The atomic number increases down the group.
It is difficult to predict the density of rubidium.
It is easier to predict the melting point and atomic radius of rubidium.
Explain why rubidium's melting point and atomic radius are easier to predict than its density.
[2]

[Total: 6]

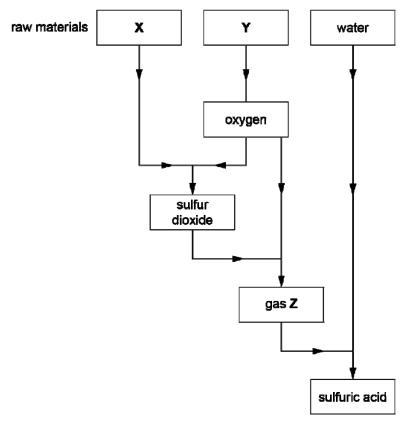
5 Titanium, Ti, atomic number 22, is used to make the wings of some aeroplanes.

Predict four physical properties of titanium.
Explain why you make your predictions and relate the properties to the use of titanium in making aeroplane wings.
The quality of written communication will be assessed in your answer to this question.
[6]
[Total: 6]

Section B – Module C5

6 Steve looks at the label on his bottle of concentrated pineapple cordial (pineapple drink). It shows some information about **100 cm³** of concentrated pineapple cordial.

nutrient	Mass in milligrams	percentage of guideline daily amount (GDA)		
vitamin C	20.8	25		


Preparation guidelines

Shake well and dilute (1 part concentrated cordial to 4 parts water)

(a)	Steve makes 1000 cm ³ of diluted pineapple cordial using the preparation guidelines.
	What mass of vitamin C will be in 1000 cm ³ of diluted cordial?
	mass of vitamin C = mg [1]
(b)	Steve suggests he could get all the vitamin C he needs by drinking pineapple cordial.
	What volume of diluted cordial would Steve need to drink each day?
	volume of diluted cordial =cm ³ [1]
	[Total: 2]

7 Sulfuric acid is made in the Contact Process.

Look at the flow chart. It shows all the stages in the Contact Process.

(a) The three raw materials used in the Contact Process are at the top of the chart.

Water is shown.

good raw material.
[3]

Write down the names of the other two raw materials (X and Y) and suggest why water is a

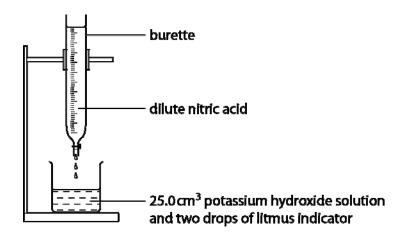
(b) Sulfur dioxide and oxygen react to give gas **Z**.

sulfur dioxide + oxygen
$$\overline{\hspace{1cm}}$$
 gas **Z**

What is the name of gas **Z**?

.....[1]

[Total: 4]


8	This question is about acid-base titrations.
	Issy decides to find out the volume of dilute nitric acid needed to neutralise 25.0 cm³ of an alkali.
	She uses 0.100 mol/dm³ potassium hydroxide solution.

(a) Issy measures 25.0 cm³ of potassium hydroxide solution.

Write down the name of a piece of apparatus she can use.

[1

(b) Look at the apparatus Issy uses to do her titrations.

She adds dilute nitric acid slowly until the end point is reached.

Describe what Issy sees when the end point of the titration has been reached.

(c) She repeats the experiment two more times.

Look at Issy's results table.

(d)

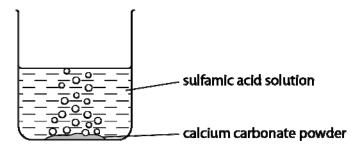
titration number	1	2	3
final burette reading in cm ³	29.7	27.0	34.8
initial burette reading in cm ³	8.5	6.9	24.9
volume of acid used (titre) in cm ³	21.2		

Calculate the mean titre for	or titration nu	umbers 2 and 3.	
Give your answer to one	decimal plac	e.	
		mean titre =	cm ³ [2]
		mountain =	
Issy repeats the titration e	xperiment w	vith three more acids.	
Look at the results.	xpommont n		
Look at the rooms.		Τ	1
	acid	mean titre in cm ³	
	Α	24.2	
	В	18.7	
	С	22.0	
Which is the most concen	tratad asid?		
Which is the most concen			
Choose from nitric acid ,	acid A , acid	B or acid C.	
Explain your answer.			
			[1]

[Total: 6]

9	Silio	licon dioxide and sodium ferrate have	e been disco	vered on the planet Mars.	
	(a)	Silicon dioxide, SiO _{2,} has a molar	mass of 60 g	/mol.	
		Calculate the molar mass of sodiu	ım ferrate, Na	a ₂ FeO ₄ .	
		The relative atomic mass of O is 1	6, of Na is 23	3, of Si is 28 and of Fe is 56.	
				molar mass =	g/mol [1]
	(b)	Compound X has been discovered	d on the plan	et Mars.	
		Compound X has the empirical for	rmula CH.		
		Which two formulas could be the	formula of co	mpound X ?	
			CH ₄	C ₂ H ₂	
			C_2H_6	C₄H ₈	
			C ₆ H ₆	C ₁₀ H ₂₂	
		answer	and		[1]
					[Total: 2]

10 Sulfamic acid solution is used to remove limescale in kettles.


Limescale is mostly calcium carbonate.

Sulfamic acid reacts with calcium carbonate as shown in the equation.

sulfamic acid + calcium carbonate \rightarrow calcium sulfamate + carbon dioxide + water

Hayley investigates 1.0 mol/dm³ sulfamic acid solution and 1.0 mol/dm³ nitric acid.

Look at the diagram.

Sulfamic acid is a weak acid. Nitric acid is a strong acid.

Hayley adds 1.0 g of calcium carbonate powder to 100 cm³ of the sulfamic acid solution.

There is a lot of fizzing but after a minute the reaction stops.

Hayley repeats the experiment. This time she uses 100 cm³ of the nitric acid.

Describe and explain, using the particle model, one **similarity** and one **difference** between the reactions of the two acids with calcium carbonate.

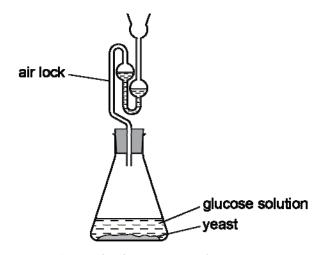
The quality of written communication will be assessed in your answer to this question.
[6]
[Total: 6]

11 Em	ma wants to	prepare a	pure dry	sample of	lead i	odide by a	a precipitation	reaction.
--------------	-------------	-----------	----------	-----------	--------	------------	-----------------	-----------

$$2KI(aq) \ + \ Pb(NO_3)_2(aq) \ \rightarrow \ PbI_2(s) \ + \ 2KNO_3(aq)$$

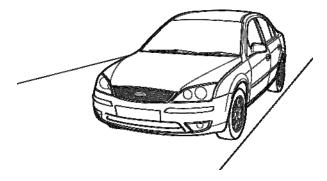
She starts with potassium iodide solution and lead nitrate solution.

Describe the s	teps Emma mi	ust do to get a r	oure dry samp	le of lead iodide	
Look at the eq	uation.				
It shows the m	asses of the re	eactants used a	nd products m	ade in this react	ion.
	2KI(aq) +	Pb(NO ₃) ₂ (aq)	\rightarrow PbI ₂ (s) +	2KNO₃(aq)	
	3.3g	3.3g	4.5g	1.9g	
What conclusion reaction?	ons can be dra	wn about the p	inciple of cons	servation of mas	s from this
					[Tota


Section C - Module C6

12 Fermentation is used to make ethanol.

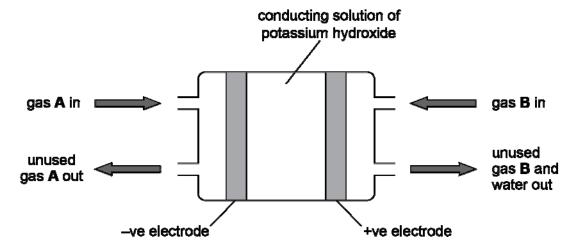
Ali and Saeed investigate fermentation.


Look at the diagram.

It shows the apparatus they use.

(a)	what are the optimum conditions for fermentation?
	[2]
/I-\	
(b)	Fermentation is one way to make ethanol.
	Write down one other way to make ethanol.
	[1]
	[Total: 3]

13 Look at the picture of a car.

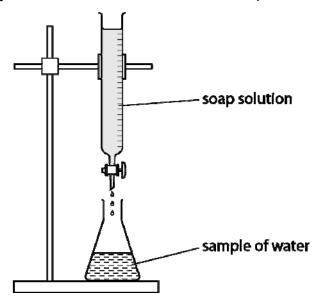

(a) Some of the car body is made of iron.
 One disadvantage of using iron is that it rusts.
 Two substances react with iron to make rust.
 Write down the names of these two substances.
 Choose from

chlorine
hydrogen
nitrogen
oxygen
water

trichlorofluoromethane

	answer and [1]
(b)	Write down two methods of preventing rusting.
	[2]
	[Total: 3]

14 Look at the diagram of a fuel cell.



A fuel cell produces electrical energy.

(a)	This fuel cell uses two gases to produce an electric current.
	What is the fuel in this fuel cell?
	[1]
(b)	Most cars are powered by an engine that burns petrol.
	Using a fuel cell to power a car instead of a petrol engine means the car's emissions are less polluting.
	Explain why.
	[2]
	[Total: 3]

15 This question is about hardness in water.

Luke and Henry investigate the hardness of three different samples of water.

They do this by adding drops of soap solution to each 50 cm³ sample of water.

They add soap solution until a lather remains on the surface after shaking.

Look at their table of results.

sample of water	volume of soap solution added in cm ³
boiled tap water	15
spring water	18
river water	28
tap water	30
distilled water	5

(a)	Luke and Henry tested distilled water as well as the four other water samples.
	Suggest why.
	r ₁

(b)	Which sample of water is the softer	st?
	Choose from	
		bo

ooiled tap water river water spring water tap water

	answer[1]
(c)	Tap water contains both temporary hardness and permanent hardness.
	Explain how you can tell from the results.
	[2]
	• •
(d)	Hardness is caused by dissolved ions in the water.
	Put a ring around the name of one ion which causes hardness.
	calcium
	carbonate
	chloride

hydrogen

magnesium

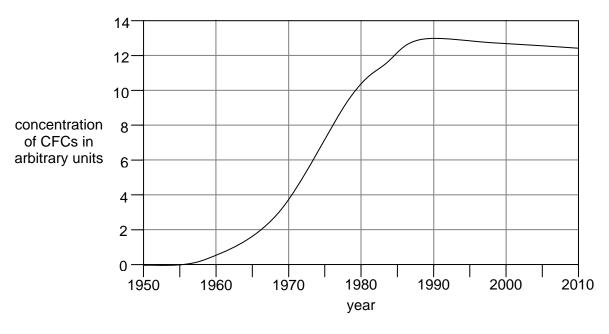
[1]

[Total: 5]

16 In 1950 research scientists thought that CFCs were very useful compounds.

CFCs have been used as aerosol propellants and refrigerants.

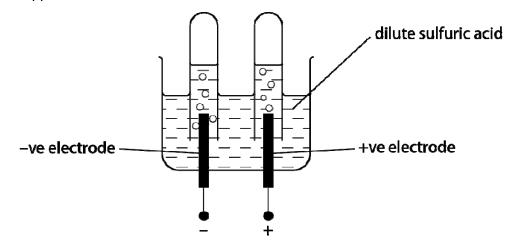
This is because they have useful properties such as being non-poisonous.


(a)	Explain, in	terms of their	properties,	why	CFCs were	used as	s propellants	and refrigerants
-----	-------------	----------------	-------------	-----	-----------	---------	---------------	------------------

(b) CFCs enter the air when aerosol cans are used or thrown away.

Look at the graph.

It shows how the concentration of CFCs in the air has changed since 1950.


(i)	The UK	government	banned	the	use	of	CF	Cs.
-----	--------	------------	--------	-----	-----	----	----	-----

	Explain why.	
		[1]
(ii)	Use the graph to estimate in which year the UK ban on the use of CFCs started.	
		[1]

[Total: 5]

17 Harry investigates the electrolysis of dilute sulfuric acid.

Look at the apparatus he uses.

Hydrogen is made at the negative electrode.

Harry measures the time it takes to fill the test tube with hydrogen.

He does five experiments.

He investigates three factors

- the concentration of the dilute sulfuric acid
- the temperature of the dilute sulfuric acid
- the current used.

He keeps everything else the same.

Look at his table of results.

experiment number	concentration of acid in mol/dm ³	temperature of dilute sulfuric acid in °C	current used in amps	time taken to fill the test tube with hydrogen in seconds
1	1.0	10	1.0	60
2	1.0	15	1.0	60
3	1.0	15	2.0	30
4	1.0	15	4.0	15
5	2.0	15	4.0	15

What conclusions can be drawn from these results?

Explain how each conclusion is supported by the data.

✓ The quality of written communication will be assessed in your answer to this question.
[6
Total: 6

Section D

18 Elizabeth is a farmer.

She has to make some decisions about growing crops on her fields which will be used for biofuels.

If she does decide to grow crops for bio-fuels she will need to decide what crops to grow.

Look at the information about bio-fuels.

Bio-fuels

- are renewable fuels used in motor vehicles
- are made from plant materials.

Farmers have to use valuable land to grow crops for bio-fuels.

They cannot use the same land to grow food crops.

a)	Write down two factors Elizabeth needs to consider so that she can make a decision about growing crops for bio-fuels.
	[1

- (b) Elizabeth is considering growing crops which could be used for two bio-fuels:
 - 1. bio-ethanol
 - 2. bio-diesel.

Look at Table 1.

It gives some information about the production of bio-fuels in 2007.

Table 1

bio-fuel	units of energy used during growth and manufacture	total energy content of bio- fuel produced in units of energy				
bio-ethanol	378	924				
bio-diesel	1	64				

Energy is used during the growth and manufacture of bio-fuels.

This has to be set against the total energy content of the fuel.

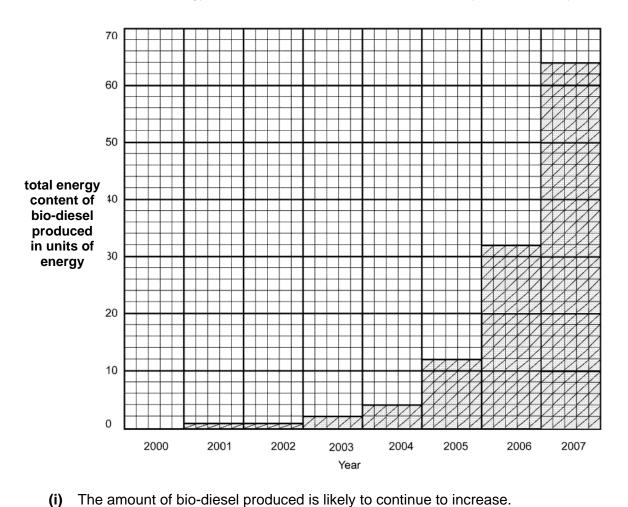
Suggest, with a reason, an advantage of producing bio-diesel rather than bio-ethanol.
[1]

(c) Elizabeth finds out more information about making bio-diesel.

Bio-diesel can be produced from a wide range of different plants.

Look at Table 2.

It shows the average volume of bio-diesel you can get from different plants.

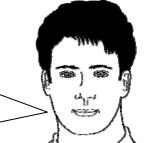

Table 2

plant used to make bio-diesel	average volume of bio-diesel in dm ³ from a 1000 m ² area
coconut	35
corn	7
hemp	150
palm	115
peanut	15
rape	16
soy	12
sunflower	13

Elizabeth has a field with an area of 10 000 m ² .	
She wants to produce as much bio-diesel as possible from her field.	
Which plant should she grow and how much bio-diesel would she produce?	
	Г1

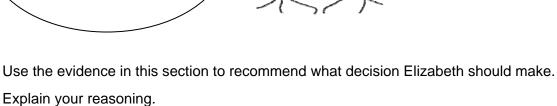
(d) Look at the bar chart.

It shows the total energy content of the bio-diesel produced each year since the year 2000.


Suggest two reason produced in 2011.	ons why it is difficult to predict the total energ	gy content of bio-diese

		[2
(ii)	What are the possible consequences of this increase in bio-diesel production?	

(e) Elizabeth's friends are discussing her choices.


Sally
Using bio-fuels means that non-renewable fossil fuels will not be used up.

Sharon
The technology needed to use bio-fuels is not very well developed.

Guy

Because the plants take in carbon dioxide when they grow, there is no overall production of carbon dioxide when using bio-fuels.

[Total: 10]

[Paper Total: 85]

END OF QUESTION PAPER

30

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information:

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

PERIODIC TABLE

1	2											3	4	5	6	7	0
				Key			1 H hydrogen 1									·	4 He helium 2
7 Li lithium 3	9 Be beryllium 4		ato	re atomic mic sym name (proton)	bol							11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
23 Na sodium 11	24 Mg magnesium 12					-						27 A <i>I</i> aluminium 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 C <i>I</i> chlorine 17	40 Ar argon 18
39 K potassium 19	40 Ca calcium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26	59 Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	65 Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	80 Br bromine 35	84 Kr krypton 36
85 Rb rubidium 37	88 Sr strontium 38	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44	103 Rh rhodium 45	106 Pd palladium 46	108 Ag silver 47	112 Cd cadmium 48	115 In indium 49	119 Sn tin 50	122 Sb antimony 51	128 Te tellurium 52	127 I iodine 53	131 Xe xenon 54
133 Cs caesium 55	137 Ba barium 56	139 La* lanthanum 57	178 Hf hafnium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re rhenium 75	190 Os osmium 76	192 Ir iridium 77	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 T // thallium 81	207 Pb lead 82	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[277] Hs hassium 108	[268] Mt meitnerium 109	[271] Ds darmstadtium 110	[272] Rg roentgenium 111	Elem	ents with atc		s 112-116 ha		orted but no	ot fully

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

SPECIMEN F

GENERAL CERTIFICATE OF SECONDARY EDUCATION GATEWAY SCIENCE CHEMISTRY B

B742/01

Unit B742: Chemistry modules C4, C5, C6 (Foundation Tier)

MARK SCHEME

Duration: 1 hour 30 minutes

MAXIMUM MARK 85

Guidance for Examiners

Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.

AW/owtte = alternative wording ora = or reverse argument

- 2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
- 3. Accept any clear, unambiguous response which is correct, eg mis-spellings if phonetically correct (but check additional guidance).
- 4. Abbreviations, annotations and conventions used in the detailed mark scheme:

/ = alternative and acceptable answers for the same marking point
(1) = separates marking points
not/reject = answers which are not worthy of credit
ignore = statements which are irrelevant - applies to neutral answers
allow/accept = answers that can be accepted
(words) = words which are not essential to gain credit
words = underlined words must be present in answer to score a mark
ecf = error carried forward

Eg mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1) work done = 0 marks work done lifting = 1 mark change in potential energy = 0 marks gravitational potential energy = 1 mark

- 5. If a candidate alters his/her response, examiners should accept the alteration.
- 6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.

© OCR 2011 2

Q	Question		Expected answers	Marks	Additional guidance
1	(a)		magnesium (1)	1	
	(b)		iodine (1)	1	
	(c)		nitrogen (1)	1	
			Total	3	

C	Question		Expected answers	Marks	Additional guidance		
2	(a)		because carbon dioxide (gas) is given off (1)	1			
	(b)		because when heated it breaks down / when heated one substance makes at least two substances / when heated changed into simpler substances (1)	1			
	(c)		cobalt carbonate → cobalt oxide + carbon dioxide (1)	1	allow CoCO ₃ → CoO + CO ₂		
	(d)		iron(III) carbonate because -25°C is less than room temperature / AW (1)	1	allow iron(III) carbonate because you have to cool it to get to – 25°C (1)		
			Total	4			

© OCR 2011

Qı	uestion	Expected answers	Marks	Additional guidance
3	(a)	negative (1)	1	if answer line is blank allow correct answer circled, underlined or ticked
	(b)	because the protons are positive (and the neutrons are neutral) (1)	1	allow because there are no negatively charged electrons in the nucleus only positive protons and neutral neutrons (1)
	(c)	atomic number is 5 because nucleus has 5 protons (1) mass number is 11 because there are 11 particles in the nucleus (1)	2	allow mass number is 11 because there are 5 protons and 6 neutrons (1)
	(d)	they told others through: use of conferences / use of books / use of journals (1) telling others allowed: peer review by other scientists / evaluation / checking of their work / repeating of their experiments by other scientists / other scientists to develop their work (1)	2	allow they publish their results (1) ignore telephone / internet / television / video
		Total	6	

© OCR 2011 4

Q	uestio	n Expected answers	Marks	Additional guidance
4	(a)	any two from stops reaction with water / stops reaction with moisture (1) stops reaction with air / oxygen (1) very reactive metal / stops it corroding / AW (1)	2	allow stops reaction with moist air (2)
	(b)	2Na + 2H ₂ O → 2NaOH + H ₂ correct formulae (1) correct balancing (1)	2	allow = sign for arrow not and or & for +
	(c)	melting point and atomic radius have steady trends so you can predict the next value but density does not have a steady trend so you cannot predict if next number is higher or lower (2) OR melting point decreases and atomic radius increases / density does not have a trend (1)	2	allow description of trends for melting point and atomic radius instead of general statements eg melting point decreases steadily and atomic radius increases steadily allow use of term pattern instead of trend if answer does not compare melting point and atomic radius with density then limited to 1 mark
		Total	6	

Question	Expected answers	Marks	Additional guidance
5	Four properties of titanium predicted with a clear rationale linked to titanium being a transition metal. Applies knowledge of properties to relate them to the use of titanium in aeroplane wings. All information in answer is relevant, clear, organised and presented in a structured and coherent format. Specialist terms are used appropriately. Few, if any, errors in grammar, punctuation and spelling. (5–6 marks) Level 2 Some properties of titanium predicted with an attempt at an explanation for the choice of these properties or their relevance to use in an aeroplane. For the most part the information is relevant and presented in a structured and coherent format. Specialist terms are used for the most part appropriately. There are occasional errors in grammar, punctuation and spelling. (3–4 marks) Level 1 Identification of titanium as a metal and at least two correct properties but no reasons given. Answer may be simplistic. There may be limited use of specialist terms. Errors of grammar, punctuation and spelling prevent communication of the science. (1–2 marks) Level 0 Insufficient or irrelevant science. Answer not worthy of credit.	6	relevant points include: identification of titanium as a metal identification as a transition element using its position in the Periodic table link that transition elements are metals physical properties – hard, good thermal conductor, good electrical conductor, lustrous, sonorous, high melting point, high boiling point, high tensile strength examples of relating properties to use in aeroplanes idea of low density since it is used for an aeroplane and will require less force to lift idea of strong to be able to be used as a wing so can withstand forces idea of malleable so it can be made into sheets allow does not react with water / does not rust ignore solid / colour of metal / heavy / light not properties opposite to list above / magnetic
	Total	6	

Qı	uestic	n	Expected answers	Marks	Additional guidance
6	(a)		41.6(1)	1	unit not needed answer on answer line takes precedence
	(b)		2000 (1)	1	unit not needed
			Total	2	

Q	uesti	on	Expected answers	Marks	Additional guidance
7	(a)		X is sulfur (1) Y is air (1) water is good because it is readily available / very cheap (1)	3	allow X is S allow one mark if X is air and Y is sulfur allow correct answers written on flow chart if answer lines are blank allow water is free
	(b)		sulfur trioxide (1)	1	allow SO ₃ ignore sulfur oxide
			Total	4	

C	uestion	Expected answers	Marks	Additional guidance
8	(a)	pipette (1)	1	allow measuring cylinder
	(b)	indicator suddenly changes colour (1) from blue or purple in alkali to red or pink (1)	2	both colours needed
	(c)	calculated titres for 2 and 3 as 21.1 and 19.9 (1) mean titre = 20.0 (1)	2	titres can be in text or in the table unit not needed but must be correct if quoted answer must be to one decimal place
	(d)	B because the least amount of acid is used to neutralise the alkali (1)	1	
		Total	6	

Q	uest	ion	Expected answers	Marks	Additional guidance
9	(a)		166 (1)	1	ignore units
	(b)		C_2H_2 and C_6H_6 (1)	1	both needed
			Total	2	

Question	Expected answers	Marks	Additional guidance
10	Applies understanding of weak and strong acids to describe in detail both a similarity and a difference which are explained in terms of hydrogen ions and collision theory. All information in answer is relevant, clear, organised and presented in a structured and coherent format. Specialist terms are used appropriately. Few, if any, errors in grammar, punctuation and spelling. (5-6 marks) Level 2 Applies knowledge of weak and strong acids to describe that both acids make carbon dioxide and the nitric acid reaction is faster. Explanation that involves the use of collision theory although not in terms of hydrogen ions specifically. For the most part the information is relevant and presented in a structured and coherent format. Specialist terms are used for the most part appropriately. There are occasional errors in grammar, punctuation and spelling. (3-4 marks) Level 1 Describes that both acids make a gas (if named the gas is carbon dioxide) and that the nitric acid reaction is faster. Answer may be simplistic. There may be limited use of specialist terms. Errors of grammar, punctuation and spelling prevent communication of the science. (1-2 marks) Level 0 Insufficient or irrelevant science. Answer not worthy of credit. (0 marks)	6	relevant points include description both acids make carbon dioxide and water ame volume / amount of carbon dioxide made nitric acid has a faster reaction / ora reaction with nitric acid finishes before one minute explanation both contain hydrogen ions which react with calcium carbonate to give carbon dioxide (and water) same amount of acid / same volume and concentration of acid / same number of moles used in both cases so both make same volume or amount of carbon dioxide with nitric acid more hydrogen ions in solution / greater concentration of hydrogen ions / hydrogen ions are more concentrated with nitric acid more collisions (per second) between hydrogen ions and particles of calcium carbonate so faster reaction allow ora for sulfamic acid but must specify which acid is being referred to
	Total	6	

Question	Expected answers	Marks	Additional guidance
Question 11 (a)	Expected answers add two solutions and filter (1) wash the residue with water (1) dry the residue in an oven / leave in air to evaporate (1)	Marks 3	ignore sieving filtering stage must be before the washing and drying stage washing stage must be before the drying stage drying stage must be the last stage allow let it dry in air ignore dry it / let it dry ignore heat it not use of a Bunsen burner to dry the residue
			allow marks from a diagram reaction mixture water ppt oven

Question	Expected answers	Marks	Additional guidance
(b)	masses do not support the principle of conservation of mass because the difference in mass is significant / more evidence is needed / AW (1) OR masses support the principle of conservation of mass because the total mass of reactants is very close to total mass of products / the difference is due to experimental error/spillage/loss of product during filtering (1) WITH use calculation for second mark	2	to gain second mark numerical evidence must be used to support
	evidence of calculation of mass of reactants = 6.6g and mass of products = 6.4g used to support conclusion / difference in masses = 0.2g (1)		either conclusion
	Total	5	

Qı	uestic	on	Expected answers	Marks	Additional guidance
12	(a) (b)		20 – 50 °C (1) no oxygen (1) hydration of ethene (1)	2	allow must have water present allow reacting ethene with steam
			Total	3	allow hydrolysis of ethyl ethanoate

Q	Question		Expected answers	Marks	Additional guidance
13	(a)		oxygen and water (1)	1	allow O ₂ and H ₂ O both needed
	(b)		any two from use a layer of oil / grease the iron (1) paint over the iron (1) galvanising the iron / coating with zinc / coating with chromium (1) sacrificial protection / attach magnesium to iron (1) alloying / make stainless steel (1) tin plate / tinning (1)	2	allow chrome plating ignore keep iron away from water or oxygen / keep it dry
			Total	3	

Question		Expected answers	Marks	Additional guidance	
14	(a)	hydrogen (1)	1	allow H ₂	
	(b)	because petrol engines make carbon dioxide / produce greenhouse gases / ora, but in a fuel cell water is the only waste product made which is not a pollutant (2) OR petrol engines make carbon dioxide/greenhouse gases / fuel cells make water (1)	2	to gain 2 marks answers must include comparison of products from petrol engine and fuel cell assume answer refers to a fuel cell unless specified otherwise allow produce oxides of nitrogen for petrol engines ignore environmentally friendly / less damaging to environment / greener	
		Total	3		

Qı	uestion	Expected answers	Marks	Additional guidance	
15	(a)	as a control / to see how much soap is needed to make a lather with pure water / water can only be hard if it needs more soap than distilled water (1)	1		
	(b)	boiled tap water (1)	1	allow other ways of indicating boiled tap water but answer on answer line takes precedence	
	(c)	because boiled tap water needs less soap than unboiled tap water it must contain temporary hardness (1) however, because boiled tap water still needs more soap than distilled water it still has hardness in it, so also contains permanent hardness (1)	2	both marking points needed, in either order, for 2 marks, however either of the marking points alone scores 1 mark	
	(d)	calcium / magnesium (1)	1	allow correct response ticked or underlined	
		Total	5		

Q	Question		Expected answers		Additional guidance	
16	(a)		any three from used as a refrigerant: because it is inert (1) because it has a low boiling point / easily compressed into a liquid (1) used as a propellant: because it does not burn / it is inert (1) because it is insoluble in water (1) because it is volatile (1)	3	properties must be linked to uses to gain credit	
	(b)	(i)	(they agreed with scientists who told them) it causes ozone depletion (1)	1	allow scientists made them aware of the risks of ozone depletion	
		(ii)	any year between 1988 and1993 (1)	1		
			Total	5		

Question	Expected answers		Additional guidance	
17	Level 3 A comprehensive explanation which correctly recognises all the factors that change the time to collect the gas and link that to the evidence. Relationship between current and time quantified. All information in answer is relevant, clear, organised and presented in a structured and coherent format. Specialist terms are used appropriately. Few, if any, errors in grammar, punctuation and spelling. (5-6 marks) Level 2 A detailed explanation which recognises some factors that change the time to collect the gas and link that to the evidence. For the most part the information is relevant and presented in a structured and coherent format. Specialist terms are used for the most part appropriately. There are occasional errors in grammar, punctuation and spelling. (3-4 marks) Level 1 An attempt at an explanation which recognises some factors that change the time to collect the gas. No attempt to link to the evidence. Answer may be simplistic. There may be limited use of specialist terms. Errors of grammar, punctuation and spelling prevent communication of the science. (1-2 marks) Level 0 Insufficient or irrelevant science. Answer not worthy of credit. (0 marks)	6	 Relevant points include: concentration does not change time because no change in time with experiments 3 and 4 temperature does not change time because no change in time with experiments 1 and 2 current does change time because of the change of time in experiments 2, 3, and 4 as current increases the time decreases from experiments 2, 3, and 4 as the current doubles the time halves allow higher level answer that current is inversely proportional to the time from experiments 2, 3, and 4 allow higher reference in terms of explanations eg as current increases more charge is passed, temperature and concentration do not change the charge passed allow reference to the rate of electrolysis eg electrolysis is quicker as current increases, temperature and concentration do not change the speed of electrolysis ignore reference to collision theory	
	Total	6		

Q	uesti	on	Expected answers	Marks	Additional guidance	
18	(a)		 cost of growing crops / price of crop / idea of making profit suitability of climate / soil impact on the environment need for fertilisers / pesticides need for new equipment 	1	two factors needed for 1 mark	
	(b)		(proportion of) energy lost / wasted / used in manufacture and growth is less / biodiesel is more efficient / bio-ethanol uses 40% of the energy produced in manufacture and growth(1)	1		
	(c)		hemp and 1500 (1)	1	both needed for mark	
	(d)	(i)	any two from idea that the trend is difficult to work out because there has been such a sudden rise (1) idea that it can be affected by other factors eg economics (1) availability of other fuels (1) changes in weather (1) or changes in government policies (1) better extraction techniques may be developed (1)	2		
		(ii)	food shortage / not enough food crops are grown (1)	1	allow over production and cannot sell the bio-diesel allow food prices increase allow less fossil fuels burnt / less carbon dioxide produced	

Question	Expected answers	Marks	Additional guidance
(e)	max 4 from: reasoning for type of bio-fuel (1)		arguments must support decision to score eg she should grow crops for bio-diesel because it is more efficiently produced (1)
	reasoning for type of plant (1)		eg she should grow hemp because she gets the biggest yield (1)
	reasoning based on environmental /social issues (max 2)		eg she should grow crops for bio-fuels because it will reduce carbon dioxide emissions / will reduce global warming / reduce greenhouse effect (1) she should grow crops for bio-fuels because bio-fuels could be used instead of petrol in cars / can be burnt instead of fossil fuels (1) eg she should not grow crops for bio-fuels because she may use lots of fertiliser / pesticide / cause eutrophication (1) she should not grow crops bio-fuels because she should be growing food / people are in the world are starving / food is a better use of the land (1)
	reasoning based on technology required (1)		eg she should not grow crops for bio-fuels because the technology is not ready yet / there are not enough cars that can use bio-fuels (1)
	reasoning based on lack of information (max 2)		eg she can not make a decision because she doesn't know about cost (1) she can not make a decision about plants because it depends on the conditions (on her farm) (1)
	Total	10	

Assessment Objectives (AO) Grid

(includes quality of written communication \mathcal{P})

Question	AO1	AO2	AO3	Total
1(a)		1		1
1(b)	1			1
1(c)		1		1
2(a)		1		1
2(b)	1			1
2(c)		1		1
2(d)		1		1
3(a)	1			1
3(b)		1		1
3(c)		2		2
3(d)	2			2
4(a)	2			2
4(b)	1	1		2
4(c)		1	1	2
5 <i>P</i>	3	2	1	6
6(a)		1		1
6(b)		1		1
7(a)	2	1		3
7(b)	1			1
8(a)	1			1
8(b)	2			2
8(c)		2		2
8(d)		1		1
9(a)		1		1
9(b)		1		1
10 🖋	3	3		6
11(a)	3			3
11(b)			2	2
12(a)	2			2
12(b)	1			1
13(a)	1			1
13(b)	2			2
14(a)	1			1
14(b)	2			2

Question	AO1	AO2	AO3	Total
15(a)		1		1
15(b)		1		1
15(c)		1	1	2
15(d)	1			1
16(a)	1	2		3
16(b)(i)	1			1
16(b)(ii)		1		1
17 🖋		5	1	6
18(a)			1	1
18(b)			1	1
18(c)			1	1
18(d)(i)			2	2
18(d)(ii)			1	1
18(e)			4	4
Totals	35	34	16	85