

Unit title: Object oriented programming

Unit number: 17

Level: 4

Credit value: 15

Guided learning hours: 60

Unit reference number: K/601/1295

UNIT AIM AND PURPOSE

Learners will be able to design, implement and test an object oriented program.
Learners will develop and demonstrate an understanding of good programming
principles through designing a system to suit a particular scenario.

LEARNING OUTCOMES AND ASSESSMENT CRITERIA

A pass grade is achieved by meeting all the requirements in the assessment criteria.

Learning Outcome (LO)

The Learner will:

Pass

The assessment criteria are the pass
requirements for this unit.

The Learner can:

LO1 Understand the principles of object

oriented programming

1.1 discuss the principles,

characteristics and features of
objected oriented programming

LO2 Be able to design object oriented

programming solutions

2.1 the objects and data and file

structures required to implement a
given design

2.2 design an object oriented

programming solution to a given
problem

LO3 Be able to implement object

oriented programming solutions

3.1 implement an objected oriented

solution based on a prepared
design

3.2 define relationships between

objects to implement design
requirements

3.3 implement object behaviours using

control structures to meet the
design algorithms

3.4 make effective use of an Integrated

Development Environment (IDE),
including code and screen
templates

LO4 Be able to test and document

object oriented programming
solutions

4.1 critically review and test an object

orientated programming solution

4.2 analyse actual test results against

expected results to identify
discrepancies

4.3 evaluate independent feedback on

a developed object oriented
programme solution and make
recommendations for
improvements

4.4 create onscreen help to assist the
users of a computer program

4.5 create documentation for the

support and maintenance of a
computer program

GRADING CRITERIA

A merit grade is achieved by meeting all the requirements in the pass criteria and the
merit descriptors.

A distinction grade is achieved by meeting all the requirements in the pass criteria
and the merit descriptors and the distinction descriptors.

Merit Criteria (M1, M2, M3)

(M1, M2, and M3 are mandatory to
achieve a merit grade. Each must be
achieved at least once per unit to
achieve a merit grade.)

Distinction Criteria (D1, D2, D3)

(D1, D2, and D3 are mandatory to
achieve a distinction grade. Each must
be achieved at least once per unit to
achieve a distinction grade.)

(In order to achieve a distinction grade,
all merit criteria must also have been
achieved.)

MANDATORY TO ACHIEVE A MERIT
GRADE

MANDATORY TO ACHIEVE A
DISTINCTION GRADE

M1 Analyse concepts, theories or
principles to formulate own responses to
situations.

D1 Evaluate approaches to develop
strategies in response to actual or
anticipated situations.

M2 Analyse own knowledge,
understanding and skills to define areas
for development.

D2 Evaluate and apply strategies to
develop own knowledge, understanding
and skills.

M3 Exercise autonomy and judgement
when implementing established courses
of action.

D3 Determine, direct and communicate
new courses of action.

TEACHING CONTENT

The Teaching Content describes what has to be taught to cover all Learning
Outcomes.

Learners must be able to apply relevant examples to their work although these do not
have to be the same as the examples specified.

LO1 Understand the principles of object oriented programming

Different programming
methodologies

Event-driven programming, procedural programming,
object oriented programming

Programming principles Commenting on your code, avoiding code repetition,
code efficiency, code consistency, good use of
Application Programming Interfaces (APIs), writing
maintainable code

Characteristics and features Classes, objects, fields, constructors, parameters,
variables, methods (accessors and mutators), data
types, interfaces, inheritance, object interaction.

LO2 Be able to design object oriented programming solutions

Requirements to implement
a design

Data dictionary, variable names, data types, system
flowchart, class diagram

Object oriented programming
solution

Problem definition, investigation into current systems,
definition of end user, requirements specification,
acceptance tests, test plans (including test
description, expected outcome, actual outcome and
improvements made), success criteria, interface
design, pseudocode.

LO3 Be able to implement object oriented programming solutions

Implement a solution

Commenting within the code, efficiency of code, good
use of general programming principles, good use of
object oriented design principles

Relationships between
objects

At least 1 class, multiple objects, fields, constructors,
parameters, variables, methods (accessors and
mutators)

Control structures

Data types, interfaces, inheritance, object interaction,
sensible naming conventions

Use of IDE tools

Features of an IDE include items such as code
templates, code tips, help features, project
management tools, user interface management, auto
complete tools, automatic code generation, warnings
and error messages, refactoring code, unit testing,
debugging tools, etc.

LO4 Be able to test and document object oriented programming solutions

Test strategies

Unit testing, system testing, end user
testing/acceptance testing, comparing program to
success criteria, carrying out test plan

Test planning

Design of a test plan (e.g. purpose of test, expected
result, actual result, action required), test data
(normal, erroneous, extreme/borderline/boundary)

Analysis of results

Make improvements to a system based on testing
results, discussion of the limitations of the system
and what improvements could be possible

Onscreen help to assist
users

Onscreen help includes items such as error
message, helpful dialogues, program specific
support, user instructions

Documentation User guide, training materials, explanation of how the
program works, glossary, technical guide,
explanation of coding decisions, hardware and
software requirements, error handling,
troubleshooting.

GUIDANCE

Delivery guidance

It will be beneficial to deliver this unit in a way that uses actual events, industry
forecasts or sector specific contexts which offer the learner the opportunity to
explore, develop and apply the fundamental principles of the sector or subject area.

Typical delivery contexts could include a booking system, an inventory system, a
ticketing system, technical support system, or a game (e.g. a card game, text-based
adventure game, accounting software or an invoicing system). There are many
different types of object-oriented programming languages and software. As long as
the outcome adheres to object-oriented principles and is written in an object-oriented
language (such as Python, Java, Delphi, C++, C#, VB.net, etc.), any scenario will
meet the requirements of this unit.

Learners will benefit from being encouraged to exercise autonomy and judgement to
research programming techniques and then design and implement an object-oriented
system.

Assessment evidence guidance

Evidence must be produced to show how a learner has met each of the Learning
Outcomes. This evidence could take the form of assignments, project portfolios,
presentations or, where appropriate, reflective accounts. As part of their evidence,
learners should include screenshots of their test results and their user interface.
Learners should include a copy of their source code and a copy of the compiled
program, as well as a sources list of their research materials.

Where group work/activities contribute to assessment evidence, the individual
contribution of each learner must be clearly identified.

All evidence must be available for the visiting moderator to review. Where learners
are able to use real situations or observations from work placement, care should be
taken to ensure that the record of observation accurately reflects the learner’s
performance. This should be signed, dated, and included in the evidence. It is best
practice to record another individual’s perspective of how a practical activity was
carried out. Centres may wish to use a witness statement as a record of observation.
This should be signed and dated and included in the evidence.

RESOURCES

Books

Budd, Timothy., An Introduction to Object-oriented Programming, Addison-Wesley;
3rd edition, 2001.

Barnes, David., Objects First with Java: A Practical Introduction Using BlueJ,
Prentice Hall / Pearson Education, 5th edition, 2012.

Meyer, Bertrand., Object-Oriented Software Construction, Prentice Hall, 2nd edition,
1997.

Websites

There a number of websites will provide relevant information. Learners should be
encouraged to research such information rather than have links given to them.

Some helpful websites:
http://stackoverflow.com/
http://docs.oracle.com/javase/tutorial/
http://docs.python.org/2/tutorial/

http://stackoverflow.com/
http://docs.oracle.com/javase/tutorial/
http://docs.python.org/2/tutorial/

