

Unit title: Event driven programming solutions

Unit number: 18

Level: 4

Credit value: 15

Guided learning hours: 60

Unit reference number: H/601/0453

UNIT AIM AND PURPOSE

This unit will enable learners to gain an insight into how software solutions are
created using event driven programming languages. Learners will have the
opportunity to design, implement, test and document solutions and develop their
programming skills.

LEARNING OUTCOMES AND ASSESSMENT CRITERIA

A pass grade is achieved by meeting all the requirements in the assessment criteria.

Learning Outcome (LO)

The Learner will:

Pass

The assessment criteria are the pass
requirements for this unit.

The Learner can:

LO1 Understand the principles of event

driven programming

1.1 discuss the principles,

characteristics and features of
event driven programming

LO2 Be able to design event driven

programming solutions

2.1 design an event driven

programming solution to a given
problem

2.2 identify the screen components and

data and file structures required to
implement a given design

LO3 Be able to implement event driven

programming solutions

3.1 implement an event driven solution

based on a prepared design

3.2 implement event handling using

control structures to meet the
design algorithms

3.3 identify and implement

opportunities for error handling and
reporting

3.4 make effective use of an Integrated

Development Environment (IDE)
including code and screen
templates

LO4 Be able to test and document event

driven programming solutions

4.1 critically review and test an event

driven programming solution

4.2 analyse actual test results against

expected results to identify
discrepancies

4.3 evaluate independent feedback on

a developed event driven
programme solution and make
recommendations for
improvements

4.4 create onscreen help to assist the

users of a computer program

4.5 create documentation for the

support and maintenance of a
computer program

GRADING CRITERIA

A merit grade is achieved by meeting all the requirements in the pass criteria and the
merit descriptors.

A distinction grade is achieved by meeting all the requirements in the pass criteria
and the merit descriptors and the distinction descriptors.

Merit Criteria (M1, M2, M3)

(M1, M2, and M3 are mandatory to
achieve a merit grade. Each must be
achieved at least once per unit to
achieve a merit grade.)

Distinction Criteria (D1, D2, D3)

(D1, D2, and D3 are mandatory to
achieve a distinction grade. Each must
be achieved at least once per unit to
achieve a distinction grade.)

(In order to achieve a distinction grade,
all merit criteria must also have been
achieved.)

MANDATORY TO ACHIEVE A MERIT
GRADE

MANDATORY TO ACHIEVE A
DISTINCTION GRADE

M1 Analyse concepts, theories or
principles to formulate own responses to
situations.

D1 Evaluate approaches to develop
strategies in response to actual or
anticipated situations.

M2 Analyse own knowledge,
understanding and skills to define areas
for development.

D2 Evaluate and apply strategies to
develop own knowledge, understanding
and skills.

M3 Exercise autonomy and judgement
when implementing established courses
of action.

D3 Determine, direct and communicate
new courses of action.

TEACHING CONTENT

The Teaching Content describes what has to be taught to cover all Learning
Outcomes.

Learners must be able to apply relevant examples to their work although these do not
have to be the same as the examples specified.

LO1 Understand the principles of event driven programming

Principles

Event triggering (e.g. user input, timers), event
handling, event loops, forms

Characteristics Service-orientated, ease of development, simplicity of
programming, suitability for Graphical User
Interfaces, example programming languages and
IDEs (e.g. VB .Net using Visual Studio)

Features Integrated Development Environment (IDE),
Graphical User Interface (GUI), GUI objects, object
properties, simplicity of programming, high-level code
associated with triggered events.

LO2 Be able to design event driven programming solutions

Specification

User needs problem definition, input/process/output,
design methodology (eg Rapid Application
Development, waterfall model).

Algorithm design Triggering event, program flow, dry run using trace
tables, algorithm efficiency.

Screen components Text boxes, labels, command buttons, combo boxes,
list boxes, images, check boxes, option buttons,
menus, data connection, effective Human Computer
Interface (HCI) design.

Data and file structures File access (eg serial, sequential, indexed sequential,
random), database structure (eg tables, records,
fields, key field), internal data structures (eg arrays,
2-dimensional arrays, records, stacks, lists).

LO3 Be able to implement event driven programming solutions

Implement a solution

Use of the IDE, declare and initialise variables and
constants, data types and sizes, data storage,
procedures, functions, programming standards (use
of comments, naming of variables, indentation).

Control structures Sequence, selection (IF…THEN, SELECT/CASE),
iteration (DO…WHILE / DO…UNTIL, FOR…NEXT).

Error handling and reporting Debugging tools (e.g. breakpoints, variable watch,
stepping), error trapping, error types (syntax errors,
logic errors, runtime errors), common causes of
errors (e.g. overflow, type mismatch, division by
zero), translator diagnostics

Use of IDE tools Source code editor, GUI designer, translation
(compiler, interpreter), code templates, screen
templates, toolbox items, debugger.

LO4 Be able to test and document event driven programming solutions

Test strategies

White box testing, black box testing, alpha testing,
beta testing, acceptance testing, peer feedback,
independent feedback

Test planning Design of a test plan (e.g. purpose of test, expected
result, actual result, action required), test data
(normal, erroneous, extreme/borderline/boundary)

Analysis of results Use of test plan, recording results, comparison of
results against expected results, corrective actions,
use of feedback to recommend improvements

Documentation and help Technical documentation, user documentation,
onscreen help.

GUIDANCE

Delivery guidance

It will be beneficial to deliver this unit in a way that uses actual events, industry
forecasts or sector specific contexts which offer the learner the opportunity to
explore, develop and apply the fundamental principles of the sector or subject area.
The unit has a strong theoretical content but it is vital that learners are able to apply
this in a practical project (or series of projects). This could be done on an individual
basis, as part of a team or as a combination of both approaches.

Learners will benefit from being encouraged to exercise autonomy and judgement to
design and implement suitable event driven programming solutions, adapt their
thinking and reach considered conclusions when testing and analysing solutions
based on a foundation of relevant knowledge, understanding and/or practical skills.

Learners would benefit from being presented with subject/sector-relevant problems
from a variety of perspectives and from being given the opportunity to explore them
using a variety of approaches and schools of thought. For example, it may be
possible for centres to establish links with software companies or other businesses in
the IT sector that produce event driven solutions, giving an opportunity to explore the
approach of experienced programmers. Alternatively, a focus on businesses with a
specific problem to be solved would allow learners to explore the needs of users and
how these needs can best be met with an event driven solution.

Assessment evidence guidance

Evidence must be produced to show how a learner has met each of the Learning
Outcomes. This evidence could take the form of assignments, project portfolios,
presentations or, where appropriate, reflective accounts.

Where group work/activities contribute to assessment evidence, the individual
contribution of each learner must be clearly identified.

All evidence must be available for the visiting moderator to review. Where learners
are able to use real situations or observations from work placement, care should be
taken to ensure that the record of observation accurately reflects the learner’s
performance. This should be signed, dated, and included in the evidence. It is best
practice to record another individual’s perspective of how a practical activity was
carried out. Centres may wish to use a witness statement as a record of observation.
This should be signed and dated and included in the evidence.

RESOURCES

Books

Foxall J., Teach Yourself Visual Basic 2012 in 24 Hours, Sams, 2012.
ISBN-10: 0672336294 ISBN-13: 978-0672336294

Palmer G., Java Event Handling, Prentice Hall, 2001. ISBN-10 : 0130418021,
ISBN-13 : 978-0130418029

Petzold C., Programming Windows: Writing Windows 8 Apps With C# And XAML, 6th
Edition, Microsoft Press, 2013. ISBN-10 : 0735671761 ISBN-13 : 978-0735671768

Open University Course Team, Event-driven Programming, Open University, 2009.
ISBN-10 : 0749219920, ISBN-13 : 978-0749219925

Campbell S et al, 101 Visual Basic.NET Applications, Microsoft Press, 2003.
ISBN-10 : 0735618917, ISBN-13 : 978-0735618916

Websites

http://en.wikipedia.org/wiki/Event-driven programming
http://eventdrivenpgm.sourceforge.net/
www.homeandlearn.co.uk/net/vbNet.html
http://en.wikibooks.org/wiki/Java_Programming/Event_Handling

http://en.wikipedia.org/wiki/Event-driven%20programming
http://eventdrivenpgm.sourceforge.net/
http://www.homeandlearn.co.uk/net/vbNet.html
http://en.wikibooks.org/wiki/Java_Programming/Event_Handling

