

GCE

Mathematics (MEI)

Unit 4777: Numerical Computation

Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

These are the annotations, (including abbreviations), including those used in scoris, which are used when marking

Annotation in scoris	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured)
	and on each page of an additional object where there is no candidate response.
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Mark Scheme

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

Mark Scheme

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question1(i)				Answer		Marks	Guidance
1	(i)	$-1 < g'(\alpha) < 1$				B1	
		Correct algebr	a to obtain give	en expression		M1	
		Derivative of l	RHS is $(1 - \lambda)$ -	$+\lambda g'(x)$		B1	
		Set this to zero	to at $x = \alpha$ to obt	$ain \lambda = 1 / (1 - g'(\alpha$	())	B1	
		In practice use	$\lambda = 1 / (1 - g')$	$(x_0))$		E1	Accept λ being re-set at each it'n
						[5]	
1	(ii)	120				G2	Curve
		100				G1	Line
		80					
		60					
		40					
		20					
		o			I		
		0	1	2 3	4 5		
		For $x < 0$, LHS	S < 0 and RHS	> 0 so no negative	roots	E1	
		Evidence of co	onvergence to s	maller root , diverg	gence from larger. Eg:		cao
		1 3		3.2		M1A1	Setting up the iteration and using it
		0.738906	2.803162	3.353199			from one starting point
		0.81032	2.35683	3.852941		A1A1	For using it for two more starting
		0.772453	1.613722	6.109826			points
		0.790132	0.933161	53.03287			
		0.781264	0.742452	1.1E+22			
		0.785571	0.807959	#NUM!			
		0.783445	0.773415	#NUM!			
		0.784486	0.78962	#NUM!			
		0.783974	0.781505	#NUM!			
		0.784226	0.78545	#NUM!			
		Converging (to	o 0.784143)				

Question				Answer		Marks	Guidance		
		Set up and use	e the relaxed iterati	on. Eg:					
		<i>k</i> :		3			M1A1	Use g'(x_0) to calculate λ	
		1	0 3.131955	5					
		$g'(x_0)$:	3.117202	2			M1A1	Set up relaxed iteration	
		2.49169	9 3.120372	2				Use it to obtain correct root	
		lambda:	3.119725	5			M1A1		
		-0.6703760	9 3.119859)					
			3.11983						
			3.119837	1					
			3.119836	5					
			3.119836	5					
			3.119836	5					
							[14]		
1	(iii)	k = 20 needs r	elaxation for both	roots:					
		<i>k</i> :	0.5	<i>k</i> :	4		M1A1	Set up, g', lambda	
		20	0.53859578	20	4.216399		A1	Smaller root	
		$g'(x_0)$	0.54212038	$g'(x_0)$	4.181296		A1	Set up, g', lambda	
		-1.82737	0.54274725	3.286191	4.1920499		A1	Larger root	
		lambda:	0.54286338	lambda:	4.1889768				
		0.353685	0.54288504	-0.43741	4.1898748				
			0.54288908		4.189614				
			0.54288984		4.1896899				
			0.54288998		4.1896678				
			0.54289001		4.1896742				
			0.54289001		4.1896724				
			0.5429	(4 dp)	4.1897				
							[5]		

Question						Answer					Marks	Guidance
2	(i)		$Q = \Sigma ($	$y - bx^2 - bx^$	$(cx^{3})^{2}$						M1	
			Partial	derivative	of Q wrt b						M1A1	
			Set to z	ero and re	e-arrange cor	nvincingly to	given expres	ssio	M1			
			Partial	derivative	e of Q wrt c a	and set to zero)				M1	
			Obtain	$\Sigma x^2 y = b \Sigma$	$\Sigma x^3 + c \Sigma x^4$						A1	
											[6]	
2	(ii)		x	у	xy	x^2y	x^2		x^3	x^4	-	
			1	7.24	7.24	7.24	1		1	1		
			2	12.15	24.3	48.6	4		8	16		
			3	13.84	41.52	124.56	9		27	81		
			4	12.25	49	196	16		64	256		
			5	7.07	35.35	176.75	25		125	625	_	
					157.41	553.15	55		225	979	N#1 A 1 A 1	Form sums
											MIAIAI	Form sums
					55	b +	225	c	=	157.41		
					225	b +	979	c	=	553.15		
							-14.3111	с	=	22.19556	M1	Formulate equations
								с	=	-1.55093		
								b	=	9.20672		
			x	у	y-fitted	residual	resid^2	_				
			1	7.24	7.655789	0.415789	0.17288				M1A1A1	Solve
			2	12.15	12.20971	0.059714	0.003566					
			3	13.84	13.66178	-0.17822	0.031764					
1			4	12.25	12.01198	-0.23802	0.056656					
1			5	7.07	7.260311	0.190311	0.036218					
1						0.249565	0.301084	_				
1												
											M1A1A1	Find residuals, sum, sum of squares

4777

Question			Answer	Marks	Guidance
	2	(ii) cont	$ \begin{array}{c} 16\\ 14\\ 12\\ 10\\ 8\\ 6\\ 4\\ 2\\ 0\\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 4 \\ 2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	G2 G2	Original data (higher at 3) Fitted curve (lower at 3)
	2	(iii)	Sum of residuals is not zero because there is no constant term. There is no constant term in order to give a curve through origin. The sum of squares of residuals would reduce because the fit would be better with one additional parameter.	[14] E1 E1 E1 E1 [4]	
	3	(i)	$T_n - I = A_2 h^2 + A_4 h^4 + A_6 h^6 + \dots$ $T_{2n} - I = A_2 (h/2)^2 + A_4 (h/2)^4 + A_6 (h/2)^6 + \dots$ $4(T_{2n} - I) - (T_n - I) = b_4 h^4 + b_6 h^6 + \dots$ $4T_{2n} - T_n - 3 I = b_4 h^4 + b_6 h^6 + \dots$ $(4T_{2n} - T_n)/3 - I = B_4 h^4 + B_6 h^6 + \dots$ $(T_n^* = (4T_{2n} - T_n)/3 \text{ has error of order } h^4 \text{ as given})$ $T_n^{**} = (16T_{2n}^* - T_n^*)/15 \text{ has error of order } h^6$	M1 M1A1 M1A1 B1 [6]	
				נסן	

Question					Answ	er		Marks	Guidance	
3	(ii)	<i>k</i> :	h	x	f(<i>x</i>)	Т	<i>T</i> *	T^{**}		
		1	1.570796	0.000000	1.000000				M1A1	Correct table of values used
				1.570796	1.414214	1.896119				
			0.785398	0.785398	1.306563	1.974232	2.000269		M1A1	T values
			0.392699	0.392699	1.175876					
				1.178097	1.387040	1.993570	2.000017	2.000000	M1A1	<i>T</i> *
			0.196350	0.196350	1.093202					
				0.589049	1.247225				MIAI	7**
				0.981748	1.353318					
				1.374447	1.407404	1.998393	2.000001	2.000000		
			0.098175	0.098175	1.047863					
				0.294524	1.135907					
				0.490874	1.213011					
				0.687223	1.278434					
				0.883573	1.331544					
				1.079922	1.371831					
				1.276272	1.398907					
			2	1.472622	1.412510	1.999598	2.000000	2.000000		
		Rate	s of conver	gence:						
			0 00<110	liffs	ratios					
		1.	890119 074222	0 070112						
		1.	974232	0.078115	0 247575					
		1.	993370 008303	0.019559	0.247373					
		1.	999598	0.004025	0.249397					
		1.	999900	0.001203	0.249049					
		1.	////00	0.000501	approx $\frac{1}{4}$				M1A1	
					uppion /4					

	Question			Answer	Marks	Guidance	
3	(ii)	T* d	diifs	ratios			
	cont	2.000269					
		2.000017	-0.000253				
		2.000001	-0.000016	0.061595			
		2.000000	-0.000001	0.062274			
		2.000000	0.000000	0.062444			
				approx 1/16			
					A1		
		T** d	liifs	ratios			
		2.000000					
		2.000000	0.000000				
		2.000000	0.000000	0.015385			
		2.000000	0.000000	0.015565			
				approx 1/64			
					Δ.1		
					[12]		
3	(iii)	Obtain values o	of <i>L</i> as follow	\$	[12]		
0	(111)	k	I I US TOHOW	5			
		1	2		M1	Spreadsheet handles variable k .	
		0.8	1.870992		A1A1	Some, all values of <i>I</i>	
		0.6	1.731752		A1	To appropriate accuracy for working	
		0.4	1.579036			shown	
		0.2	1.40692				
		0	1.196?				
		Comment that a	as <i>k</i> gets clos	e to zero convergence is slower / results are	E1		
		less accurate.	-	-			
		Comment that r	ratios of diffe	erences drift away from their theoretical values.	E1		
					[6]		

Question					Ans	wer			Marks	Guidance	
4	(i)	Diagona	al don	ninance: $a \ge$	≥ 2 and $b \geq 4$				B1B1	B1 inequalities, B1 'and' soi	
		Strict di	agona	al dominanc	e: as above b	out with at lea	ast one '>'		B1B1	B1 for $>$, B1 for correct statement	
		Diagona	al don	ninance is n	ot sufficient,	strict diagon	al dominance is	a	B1B1		
		sufficier	nt but	not necessa	ry condition	for G-S to co	onverge				
									[6]		
4	(ii)	G-S star	rting,	e.g.							
		a	b	x_1	x_2	x_3	x_4				
		2	4	0	0	0	0				
				2	-0.25	0.625	-0.1875				
				2.03125	-0.57813	0.882813	-0.07422		M1A1	G-S starts off correctly (NB: not	
				2.251953	-0.81738	0.945801	-0.15308			G-J)	
				2.332153	-0.88898	1.021027	-0.15556				
				2.366707	-0.94387	1.049715	-0.1585				
									M1A1	continues correctly	
		and con	vergin	ng to							
				2.416667	-1	1.083333	-0.16667		M1A1	converges correctly	
		Conject	ure so	olution is: 29	9/12, -1, 13/1	12, -1/6			M1A1		
		Demons	strate	correct by s	ubstitution				M1A1		
									[10]		
4	(iii)	Example	es of f	fast converg	gence with a	>>2, <i>b</i> = 4			M1A1		
		Exampl	es of f	fast converg	gence with a	= 2 and b >>	4		M1A1		
									[4]		
4	(iv)	Evidenc	e of s	ensible trial	l and improve	ement			M1		
		Concluc	b = b	2.5 (ie <i>b</i> =	2.6 G-S conv	verges)			A1		
									[2]		
4	(v)	Evidenc	e of s	ensible trial	and improve	ement			M1		
		Concluc	the $a =$	1.6 (ie, <i>a</i> =	1.7 G-S con	verges)			A1		
									[2]		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

