
REVIEWING DELIVERY AND
ASSESSMENT OF
COMPONENT 3 (NEA)
Get Going: FIRST TEACHING FROM 2016 OCR GCSE (9-1) Computer Science (J276)

Introductions

• A chance to meet your trainer and for them to
discuss their background and experience

• A chance to check any technical issues you
may be having through message with your
host/facilitator

Aims/Objectives

• Give guidance on the structure, delivery and
assessment of the specification

• Explain the administration procedures
• Consider ideas and approaches for the

teaching of the NEA
• Improve delivery and assessment of the NEA
• Focus on assessing the new NEA tasks and

the expectations for the NEA

What is the NEA?

• Programming Project
– 20% of a candidates final assessment
– Independently Completed
– Levels of Control and Teacher Support tightly

prescribed within the specification
• Candidates submit an attempt at one of the

three available tasks, provided by the board.
• Marked & Internally Standardised within the

Centre
• Sent for moderation to the board

What is the NEA?
• Tasks released in September of Year 11

– Also known as terminal year
• Choice of 3 task provided by the board

– Candidates submit their attempt for one task
• Digital submission only (repository/USB/CD)
• Each tasks consists of a set of component parts

– Between 6-9 bullet points
• Fixed 20 hour limit

– 20 working hours
– Access Requirements applicable
– Not including logging on/off, network issues etc.

Nature of NEA
• Assess the whole range of ability from Level 9 to Level 1
• All candidates are not expected to complete all of the

component parts
• Must work within Formal Control conditions

– Limits interaction and support allowed
– Strictly no internet allowed
– Must refer to the specification and JCQ Instructions for NEA

• Now uses an ‘offline’ resource bank
– Teaching/learning resources, preparatory notes, text books etc.

• Allowed internet access to an IDE only
– Must make sure it conforms to security restrictions
– Must not allow access beyond the IDE

JCQ Instructions
• Candidates can have a copy of the mark scheme

– simplified candidate-friendly version is fine

• Any assistance must be:
– Comply with the ‘Permitted Support’ section of the J276 Specification (pg 22)
– Recorded on the URS
– Reflected in the marks given for that section

• Work cannot be marked and returned to candidates
– No feedback on work is allowed under Formal Control
– Candidates should not receive any guidance on how to improve
– Once marked, all worked should be stored securely

• No access to the Internet
– access to internally stored resources/web pages etc. need to be referenced
– Allowed access to an online IDE as long as it complies with Formal Control requirements

• Work must be stored securely between lessons (i.e. timed accounts or
memory sticks that are collected, etc)

• Candidates may not bring in any work/notes/research once the NEA has
started

Permitted Teacher Assistance

Analysis and Design:
• Assistance may only be given when a candidate is unable to progress

beyond this stage. Examples may be:
a) they can’t split the program down and need support identifying inputs,

processes outputs
b) they don’t understand the problem and need talking through it to

understand how it works
c) they cannot create a design which shows basic functionality

• Teachers may not correct errors or omissions
– i.e. a candidate has forgotten to identify validation, they cannot be reminded

to do this
– i.e. a candidate has missed a vital element of the program, they cannot be

told to include it

Permitted Teacher Assistance

Development:
• General syntax support may be given

– e.g. Indentation issues, missing brackets

• Teachers cannot correct errors in the program
– e.g. logic errors, correct flow of control, suggest use of alternate techniques

Testing and Evaluation and Conclusions
• No support is permitted at all in this section

Reflecting assistance in the URS

• Any and all assistance needs to be recorded and
submitted with the work

• We suggest that you mark analysis and design as
if there was no assistance and then deduct for the
assistance given

Example: Candidate struggles with Input/Output/Processing
requirements for some sub parts of task
• Would be given 5 marks if done independently
• Teacher provides assistance for some parts of I/O/P
• Mark of 5 adjusted to mark of 3 to reflect support given
• URS comments added to explain mark of 3

Reflecting assistance in the URS

Example: candidate does not understand the
problem and need talking through it to understand
how it works
• Deduction in analysis
• without assistance would have got 4 marks
• with assistance may be 1 or 2 marks
• Comments added to URS

Reflecting assistance in the URS

Example: Assistance with algorithms

• Deduction in Design
• Without assistance would have got 7 marks
• With assistance 3 marks
• Comments Added to URS

Common Malpractice Examples

• Support beyond that permitted within the specification
– E.g. Support in the ‘Testing and Evaluations and Conclusion’

sections

• Documents showing how work should be structured,
templates, sentence starters

• Internet access during lessons
• Allowing work/tasks to be taken from the lessons
• Giving feedback for students to change/improve their work
• Students working together in lesson
• Teaching similar but different tasks to candidates between

sessions

What is not malpractice

• Teaching how to do something (e.g. testing) before
starting testing/the controlled assessment

• Providing a set of resources for a specific language
for students to access during formal control

• Teaching the skills required to do the tasks as part
of generic programming lessons

• Teaching candidates how to interpret the mark
scheme and the requirements needed for each
statement

Resourcing the NEA

• All resources must follow the guidance on
resourcing issued by OCR

• Resources must be ‘locked down’ from 1
September, once the live tasks are available
– No further resources may be added until the centre have

submitted their marks to OCR for that series
• Must not allow external/internet access
• Should allow candidates to have support in

techniques contained within the specification

Referencing resources
• Candidates can use internally stored materials

– Worksheets that explain how to use specific code
– How to program documents/textbooks

• Candidates can use printed resources
– Textbooks
– Books on programming

• Resources cannot:
– Be specific to the tasks
– Give solutions to the tasks
– Be similar but different tasks

• All resources candidates use must be referenced in their work (e.g.
resource name)

• Used resources do not need submitting referencing at moderation
– However it may that they may be requested by the board (e.g. as part of a

malpractice investigation)

Teaching confident CT

Bottom up:
• Techniques introduced

separately
• Good starting point
• Quick progress
• Lacks depth

Top down:
• Fully developed app
• Explained/scaffolded
• Fix/adapt/comment
• Dry runs/flowcharts
• Great for problem

solving

Flip from bottom up to top down when right for individual
students (differentiation) – can flip back!
• Stronger students will flip much quicker
• Weaker students will appreciate much more scaffolding

Delivery
• Teach programming as generic skills with exercises

– Include good programming etiquette (validation, identifier names,
comments, efficiency)

• Produce/collate/buy resource bank to put on network for
students to access

• Teach and practice ‘Process for Success’
– analysis, design, development, testing, evaluation

• Provide students with a copy of the tasks
• Provide students with a copy of the mark scheme

– Spend time ensuring students have read, discussed and understand
the mark scheme before starting the NEA

• Read the comprehensive guidance document produced by
OCR
– Available by end of March latest on J276 web page

Teach the ‘Process for Success’

Success criteria
(requirements for solution to be

successful)

Planning and design
(flow charts & pseudocode)

Development
(narrative of process &
explanations of code)

Testing and remedial actions
(with narrative of changes made)

Evaluation
(clearly linked to success criteria)

Success
Criteria

Plan and
Design

Development
Testing &
Remedial
Action

Evaluation

Assessment

• The marking criteria describee typical work for that
mark band

• They are NOT tick lists
• Marks should be awarded using a ‘best fit’

approach
• The mark should be worked holistically
• Work matching the descriptor in the higher band

will automatically have covered the lower bands for
that element

• The overall mark should reflect the balance of
marks in the mark bands

Assessment

• Bands are proportionate to the work submitted
by the candidate

• Candidates cannot access top mark bands
unless they have attempted all tasks
• If some tasks have been attempted

• Access lowest mark band
• If most tasks attempted

• Access to lower and middle mark band
• If all tasks attempted

• Access to all three mark bands

Assessment

• Once you have limited the mark bands as
appropriate:
– For each section, choose the mark within that band

than reflects the candidate’s submission as a whole
– Where work convincingly meets the statement, give

the higher mark
– Where work adequately meets the statement, give the

middle mark
– Where the work just meets the statement, give the

lowest mark
– For mark bands with only 2 marks to choose from,

you will need to make a value judgement

Programming Techniques

Evidence will come from:
• Code listings
• Testing evidence

We are looking for:
• Evidence of splitting the program

down (e.g. sub-programs etc. that
match design)

• Full code (so it can all be seen
together)

• Efficient code (lack of repeated
sections)

• Challenging additions
• Evidence to prove solutions work

Analysis

Evidence will come from:
• Documentation

We are looking for:
• Success criteria
• Splitting down the problem(s)
• What validation is needed?
• How will it be tested and with

what data?

Design

Evidence will come from:
• Documentation

We are looking for:
• Pseudocode/flowcharts

– flowcharts must be specific and show
how the algorithm(s) will work

• Validation clear in algorithm
design/separate

• Success criteria
– may be from analysis

• How it will be tested
– Functionality
– Robustness

Development

Evidence will come from:
• Diary or narrative of testing during

development
• Final code listings (complete)
• Bibliography

We are looking for:
• The story of the creation
• What went wrong?

• How was it fixed?
• What worked?
• Appropriate identifiers
• Comments in code

Testing and Evaluation and Conclusions
Evidence will come from:
• Test plan
• Test results
• Test against success criteria

We are looking for:
• Testing for functionality
• Testing for robustness
• Detailed test plan
• Evidence of results (screenshots,

videos)
• Corrections from testing
• Comparison to success criteria with

supporting evidence
• Discussion of any areas

incomplete/not functional and how
these can be fixed

Task 1

• Look at, and assess Sample Work 1
• Use the pointers earlier with regards to what we

look for
• Use the guidance earlier about how to place within

a mark band
• Give a mark for each section of Sample Work 1

Sample Work 1:
Programming techniques

– Range of appropriate techniques used
• subprograms, selection, iteration (pages 45-59)

– Task is broken down
• structure diagram and method of tackling (page 4)

– Has used sub-programs
• pages 40-54

– Some inefficiencies
• repeated code (pages 45-59)

– Some minor errors

Mark Awarded: 10

Sample Work 1:
Analysis

– Clear success criteria page 1
– Decomposition

• structure diagram (page 4)
• pseudocode (pages 5-7)

– Validation described
• But is limited (pages 5-7)

– Testing described
• Not fully developed/could have had more (page 8)

Mark Awarded: 4

Sample Work 1:
Design

– Complete pseudocode
• page 5-7

– Plan for interface (GUI is not a requirement of mark scheme)
• page 1

– Description of testing present
• Bu it is brief (page 8)

– Success criteria identified
• page 1

– Limited validation
• page 6

– Variables and data structures within pseudocode
• page 5-7

Mark Awarded: 6

Sample Work 1:

Development
– This is shown with code

• errors and corrections pages (pages 9-30)

– Code has meaningful identifiers
• pages 43-57

– Good use of comments through most of code
• pages 43-57

– No record of resources

Mark Awarded: 7

Sample Work 1:

Testing and Evaluation and Conclusions
– Some tests with evidence
– could be more thorough

• better range, and checking robustness further (pages 31-42)

– Correction of error shown
• page 38

– Comparison to success criteria
• could be more explicit in location of evidence (page 44-46)

– Short final comment
• page 46

Mark Awarded: 4

Sample Work 1:

Final Mark: 31/40

Task 2

• Look at, and assess Sample Work 2
• Use the pointers earlier with regards to what we

look for
• Use the guidance earlier about how to place within

a mark band
• Give a mark for each section of Sample Work 2

Sample Work 2:
Programming techniques
• Programming Techniques (pages 15-18)

– Several of the task components have been tackled, with the final
couple not started.

– The task is broken down but could be more explicit of components.
Plan (page 1, 5, 8, 12)

– Suitable techniques have been used selection, iteration, file access,
lists (pages 15-18)

– Clear inefficiencies, repeated code and accessing lists manually
rather than through iteration (page 15).

– ‘Clumsy’ way of programming it i.e. it is difficult to add/make changes
because of how it has been stored and accessed.

Mark Awarded: 6

Sample Work 2:
Analysis
• Pages 1, 5, 8, 12

– Success criteria for each task are weak
– Limited description of testing for each part
– Validation is mentioned, but in most places this is

actually incorrect. It should be referring to input of
data.

Mark Awarded: 2

Sample Work 2:

Design
• Pages 1, 5, 8, 12

– Pseudocode algorithms (weak and not always clear – not code-like
enough)

– No plan for interface
– Statement for testing for each one, identifies the type of data at times
– No destructive testing identified
– Validation is mentioned, but in most places this is actually incorrect. It

should be referring to input of data.

Mark Awarded: 2

Sample Work 2:

Development
• Pages 2-3, 6, 9-10, 12

– This explains the code, does not show the actual
development

– Some limited testing to show elements work
• pages 3-4, 6-7, 10, 13-14

– Code has suitable identifiers
– No comments in code

Mark Awarded: 2

Sample Work 2:

Testing and Evaluation and Conclusions
– There is some testing to show elements work

• pages 3-4, 6-7, 10, 13-14

– No destructive testing
– Statement for each success criteria saying if it is met or

not
• no linking or provision of evidence.

Mark Awarded: 2

Sample Work 1:

Final Mark: 14/40

Support for Delivery
OCR will provide an extensive range of support channels:

• A dedicated subject-specific telephone number/email
• Centre Support Visits (via CPD Hub)
• Attendance at CAS hubs
• Network Events (bookable through CPD Hub/Eventbrite)
• CPD Courses for specifications (http://cpdhub.ocr.org.uk)
• Resources for the whole specification via the subject

website
• Additional teacher guidance that includes:

• Teacher Delivery Packs
• Coding Challenges
• Support Documents
• Endorsed Resources

Managing marked work

• Once the work is marked:
– Teachers may not provide feedback on the work

for candidates to revisit and modify the work
– The work must be kept securely

Completing the Unit Record Sheet (URS)

• Please check that all details are given on the URS
• Check the form for accuracy

– Candidate name and number
– Marks and additions accurate
– Each candidate has a unique URS

• Missing URS forms make moderation much more
difficult.

• Teacher comments are usually helpful.
– Avoid just pasting in extracts from the mark scheme.
– Comments should be used to justify a contentious mark,

for example choosing between mark boundaries
– Helps to justify your deicisons to the moderator

Submission of work

• Candidate work must be submitted electronically
– either via the OCR repository
– or by post using CD, DVD or USB Pen

• You should:
• Submit work as a single .pdf document
• Submit work electronically
• Ideally use the repository (file size limit 600MB)

• Repository allows bulk uploads but only with correct
folders & naming conventions

You now keep the CCS161

Keeping in touch
• OCR Website – www.ocr.org.uk
• @ocr_ict - tweet/follow for resources/news/updates
• Were also on CAS and on Facebook
• Facebook GCSE Group:

https://www.facebook.com/groups/266581410111152/

Customer Contact Centre
Tel: 01223 553998
Email: computerscience@ocr.org.uk

Thank you for attending this
training course and we hope you

have found it supportive

