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Section A (24 marks)

1 Pierre knows that, if he gambles, he will lose money in the long run. Nicolas tries to convince him that this 
is not the case.

 Pierre stakes a sum of money in a casino game. If he wins then he gets back his stake plus the same amount 
again. If he loses then he loses his stake.

 Nicolas says that Pierre can guarantee to win by repeatedly playing the game, even though the probability of 
winning an individual game is less than 0.5.

 His idea is that Pierre should bet in the first game with a stake of £100. If he wins then he stops, as he will 
have won £100.

 If he loses then he plays again with a stake of £200. If he wins then he has lost £100 and won £200. This 
gives a total gain of £100, and he stops.

 If he loses then he plays again with a stake of £400. If he wins this time he has lost £100 and £200 and won 
£400. This gives a total gain of £100, and he stops.

 Nicolas’s advice is that Pierre simply has to continue in this way, doubling his stake every time that he loses, 
until he eventually wins. Nicolas says that this guarantees that Pierre will win £100.

 You are to simulate what might happen if Pierre tries this strategy in a casino game in which the probability 
of him winning an individual game is 0.4, and in which he has £1000 available.

 (i) Give an efficient rule for using 1-digit random numbers to simulate the outcomes of individual games, 
given that the probability of Pierre winning an individual game is 0.4. [2]

 (ii) Explain why at most three random digits are needed for one simulation of Nicolas’s strategy, given that 
Pierre is starting with £1000. [1]

 (iii) Simulate five applications of Nicolas’s strategy, using the five sets of three 1-digit random numbers in 
your answer book. [2]

 (iv) Summarise the results of your simulations, giving your mean result. [3]
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2 A bag contains 26 cards. A different letter of the alphabet is written on each one. A card is chosen at random 
and its letter is written down. The card is returned to the bag. The bag is shaken and the process is repeated 
several times.

 Tania wants to investigate the probability of a letter appearing twice. She wants to know how many cards 
need to be chosen for this probability to exceed 0.5. Tania uses the following algorithm.

 Step 1 Set 1n =  
 Step 2 Set 1p =
 Step 3 Set 1n n= +

 Step 4 Set 26
27p p n

#=
-c m

 Step 5 If 0.5p 1  then stop
 Step 6 Go to Step 3

 (i) Run the algorithm. [4]

 (ii) Interpret your results. [2]

 A well-known problem asks how many randomly-chosen people need to be assembled in a room before the 
probability of at least two of them sharing a birthday exceeds 0.5 (ignoring anyone born on 29 February).

 (iii) Modify Tania’s algorithm to answer the birthday problem. (Do not attempt to run your modified 
algorithm.) [1]

 (iv) Why have 29 February birthdays been excluded? [1]
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3 The adjacency graph of a cube  is shown.

 Vertices on the graph represent faces of the cube.
 Two vertices are connected by an arc if the corresponding
 faces of the cube share an edge.

 The second graph is the complement of the adjacency graph,
 i.e. the graph that consists of the same vertices together with
 the arcs that are not in the adjacency graph.

        

top

base

front

left right

back

top

base

front

left right

back

 Throughout this question we wish to colour solids so that two faces that share an edge have different colours. 
The second graph shows that the minimum number of colours required for a cube is three, one colour for the 
top and base, one for the front and back, and one for the left and right.

 (i) Draw the adjacency graph for a square-based pyramid,
  and draw its complement. Hence find the minimum number
  of colours needed to colour a square-based pyramid.     [3]

 (ii) (A) Draw the adjacency graph for an octahedron,
    and draw its complement. [3]

  (B) An octahedron can be coloured using just two colours.
    Explain how this relates to the complement of the adjacency graph.  [2]
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Section B (48 marks)

4 Two products are to be made from material that is supplied in a single roll, 20 m long and 1 m wide. The two 
products require widths of 47 cm and 32 cm respectively.

 Two ways of cutting lengths of material are shown in the plans below.

waste

length x metres

47 cm

47 cm

6 cm

waste

length y metres

47 cm

32 cm

21 cm

 (i) Given that there should be no unnecessary waste, draw one other cutting plan that might be used for a 
cut of length z metres. [2]

 (ii) Write down an expression for the total area that is wasted in terms of x, y and z. [2]

 All of the roll is to be cut, so x + y + z = 20.

 There needs to be a total length of at least 20 metres of the material for the first product, the one requiring 
width 47 cm.

 (iii) Write this as a linear constraint on the variables. [1]

 There needs to be a total length of at least 24 metres of the material for the second product, the one requiring 
width 32 cm.

 (iv) Write this as a linear constraint on the variables. [1]

 (v) Formulate an LP in terms of x and y to minimise the area that is wasted. You will need to use the 
relationship x + y + z = 20, together with your answers to parts (ii), (iii) and (iv). [3]

 (vi) Solve your LP graphically, and interpret the solution. [7]
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5 A village amateur dramatic society is planning its annual pantomime. Three rooms in the village hall 
have been booked for one evening per week for 12 weeks. The following activities must take place. Their 
durations are shown.

Activity Duration 
(weeks)

A choose lead actors 1

B choose rest of actors 1

C choose dancers 1

D rehearse lead actors 8

E rehearse rest of actors 6

F rehearse dancers 6

G prepare scenery 6

H install scenery 1

I prepare music 2

J make costumes 4

K dress rehearsals 2

 Each activity needs a room except for activities G, I and J.

 Choosing actors and dancers can be done in the same week. Rehearsals can begin after this.

 Rehearsing the dancers cannot begin until the music has been prepared.

 The scenery must be installed after rehearsals, but before dress rehearsals.

 Making the costumes cannot start until after the actors and dancers have been chosen.

 Everything must be ready for the dress rehearsals in the final two weeks of the 12-week preparation period.

 (i) Complete the table in your answer book by showing the immediate predecessors for each activity. [4]

 (ii) Draw an activity on arc network for these activities. [5]

 (iii) Mark on your network the early time and the late time for each event. Give the critical activities. [5]

 It is discovered that there is a double booking and that one of the rooms will not be available after week 6.

 (iv) Using the space provided, produce a schedule showing how the pantomime can be ready in time for its 
first performance. [2]
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6 A mountain ridge separates two populated areas. Networks representing roads connecting the villages in 
each area are shown below. The numbers on the arcs represent distances in kilometres.
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 There is also a mountain road of length 15 kilometres connecting C to Z.

 (a) A national bus company needs a route from A to X.

  (i) Use Dijkstra’s algorithm on the complete network, including CZ, to find the shortest route from A 
to X. Give the route and its corresponding distance. [6]

  (ii) Would it need fewer computations to use Dijkstra’s algorithm on the network for villages A to 
F to find the shortest route from A to C, and then use Dijkstra’s algorithm on the network for 
villages U to Z to find the shortest route from Z to X? Give a brief justification for your answer.
 [2]

 (b) The local council needs to discover which roads it should keep clear of snow during the winter to keep 
all the villages connected, and the corresponding total length of road.

  (i) Use Kruskal’s algorithm on the network for villages A to F to find a minimum connector for 
, B, C, D, E, FA" ,. Show your use of the algorithm. Draw your minimum connector. [3]

  (ii) Use Prim’s algorithm on the network for villages U to Z to find a minimum connector for 
,U V, W, X, Y, Z" ,, starting at U. Show your use of the algorithm. Draw your minimum 

connector. [3]

  (iii) What is the total length of road that the council must keep clear of snow? [2]

END OF QUESTION PAPER
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