

GCE

Chemistry B (Salters)

Unit F335: Chemistry by Design

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Annotation	Meaning	
✓	correct response – there must be one tick for every one mark awarded	
×	incorrect response - These should not be used for every mark lost; just use them in places where it makes your	
	marking clearer.	
bod	benefit of the doubt given. Please give a tick as well	
nbod	benefit of the doubt not given	
ECF	error carried forward	
^	information omitted	
1	Ignored	
SEEN	to be used on any other page where there is a response but no other annotation	
BP	indicates a blank page that has been checked.	
CON	contradicts a correct response and negates the mark	
SF	to draw attention to the significant figures	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question	Answer	Marks	Guidance
1a	C ₁₃ H ₁₈ O ₂	1	ALLOW any order of the elements
1bi	CH ₃ CH(CH ₃)CH ₂ Cl $\sqrt{1-chloro-2-methylpropane} \sqrt{1-chloro-2-methylpropane}$	2	ALLOW any unambiguous structural formula
1bii	AICI ₃ (catalyst) AND anhydrous $$	1	IGNORE reaction conditions DO NOT ALLOW other reagents
1ci	arachidonic acid	1	IGNORE minor spelling errors
1cii	binds with/bonds with/fits into <u>active site</u> $$ stops (some) substrate binding/fitting/bonding OR competes with substrate/prevents enzyme-substrate complexes forming/blocks active site AW $$ (is reversible/unbinds because) does not bond covalently/forms temporary / weak bonds with active site/can be reversed by increasing substrate concentration (AW) $$	3	
1d	aqueous bromine/bromine solution/ bromine in (named) organic solvent $$ turns colourless from yellow/orange /brown ${\rm OR}$ decolourised $$	2	Not just 'bromine' for mp1 but ALLOW for 2 marks Bromine changing from red/red brown to colourless If aqueous bromine/bromine solution ALLOW any colour combinations of orange/yellow/brown If bromine in solvent ALLOW any combination of brown, red or orange. ALLOW decolourises bromine for 1 mark
1ei	(isomers that have) same <u>structural formula</u> AND different arrangements in space	1	DO NOT ALLOW atoms bonded in different order DO NOT ALLOW 'same molecular formula'
1eii	cis AND Z	1	
1fi	ether	1	ALLOW alkoxy
1fii	part of molecule (AW) $$ where pharmaceutical (AW) action occurs/(that) causes pharmacological effect AW/that causes biological action (AW) $$	2	DO NOT ALLOW medicinal action

1fiii	o ch	1	Must include all 6 carbons of right hand ring
1g	$\bigcup_{o^{-}}^{NH_2} \bigvee_{CH_3COO^{-}} \bigvee$	2	ALLOW 1 mark if both structures correct except show OH group IGNORE cations
		18	

2a	1. (trend because) instantaneous (dipole) induced dipole (bonds/forces) get stronger down the group $$ 2. (trend because) more electrons (down the group)/molecules are larger AW (down the group) $$ 3. water has H-bonds $$ 4. H ₂ S has pd-pd/id-id/ weaker H bonds $$ 5. imb in water (are stronger, so) need more energy to break (AW) ORA $$	5	 DO NOT ALLOW abbreviations <i>e.g.</i> id-id DO NOT ALLOW 'more' id-id down group Mark independently QWC only allow marking point 4 if 3 scored IGNORE overcome
2b	ice (molecules are) held in (more) open structure/held further apart (AW) $$ by hydrogen bonds (in ice) $$	2	Air spaces negates mp1
2ci	 O is more electronegative than C (ora) so C=O bonds polarised √ Bond polarities cancel / charges balance / the dipoles balance / dipoles cancel out/ centre of +/- charge coincide √ 	2	ALLOW O is more electronegative than C (ora) with bond polarities shown on C=O Must be a comparison (of electronegativity) Mark independently

2cii	H-bonds broken in water $$ H-bonds formed between CO ₂ and water $$ id-id bonds broken in CO ₂ $$ (there is) little <u>energy</u> change when imb are made/broken AW $$	4	IGNORE pd pd bonds
2di	Na ⁺ (g) + Cl ⁻ (g) √ NaCl(aq)/Na ⁺ (aq) + Cl ⁻ (aq) √ NaCl(s) √ sum of enthalpy changes of hydration (of ions) = -775 kJ mol ⁻¹ √	4	For mp2, energy levels must be in sequence shown/ IGNORE arrows
2dii	Ion (-)dipole $$	1	
2e	$\begin{array}{rcl} Mg_{3}N_{2} + \ 6H_{2}O & \rightarrow & 3Mg(OH)_{2} + \ 2NH_{3} \\ NH_{3} \ formed \ \ completely \ correct \ \end{array}$	2	IGNORE state symbols
		20	

3ai	to prevent equilibrium position moving $$ rates (of back +fwd) slower/stops reaction $$	2	ALLOW 'prevents conc of I ₂ changing' IGNORE quench
3aii	$[I_2] = 26.3 \times 0.5 \times 0.0687/100 $ = 9.03 × 10 ⁻³	2	ALLOW 2 or more sf Correct answer on answer line scores 2 without reference to working. $1.80x \ 10^{-2}$ (no factor of 2) scores 1 without reference to working. 9.03×10^{-4} (divides by 1000 not 100) scores 1 without reference to working mp 2 ecf only for a transcription error
3bi	2 x 0.00863/0.01726 (mol dm ⁻³) of HI react (to give 0.00863 mol dm ⁻³ l ₂) $$ (Initial conc of HI) = 0.004 x 10 or 0.04 (mol dm ⁻³) AND 0.04 – 0.01726 = 0.0227 $$	2	Method must be shown to score either mark ALLOW alternative methods
3bii	$[H_2] = [I_2] \text{ OR } [H_2] = 0.00863 $ $\mathcal{K}_c = [H_2] [I_2]/[HI]^2 \text{ OR } [I_2]^2/[HI]^2 \text{ OR } [H_2]^2/[HI]^2 \text{ OR numbers}$ substituted $$ = 0.14453 $$ = 0.145 (3 sf) $$	4	First marking point can be inferred from later working 0.14453or 0.144 score 3 without working 0.145 scores 4 without working ALLOW mp4 for any calculation correctly evaluated and shown to 3sf
Зс	I/iodine has been oxidised from -1 to 0 $$ S/sulfur has been reduced from +6 to -2 $$	2	Give one mark for correct identification of iodine (oxidised) and sulfur (reduced) without/with wrong oxidation states. DO NOT ALLOW I ₂ for 'iodine'
3d	Endothermic $$ (because) lodine is formed so equilibrium (position) must have moved to right $$	2	IGNORE favouring
3ei	$N_2H_4 + 2I_2 \rightarrow N_2 + 4HI$	1	IGNORE state symbols ALLOW $N_2H_4 + I_2 \rightarrow N_2 + 2HI + H_2$

Зеіі	H [‡] N [‡] N ⁺⁺ H H 5 electrons around each N √ completely correct √	2	
3eiii	109 $$ 4 pairs/ groups of electrons/ 4 areas of electron density/ 4 regions of <u>negative</u> charge $$ repel AND get as far away from each other as possible $$ pyramidal $$	4	ALLOW 104 – 110 mp3 ALLOW 'minimise repulsion' IGNORE 'repel as much as possible' QWC 'pyramidal' must be spelled correctly to score IGNORE tetrahedral/triangular ALLOW trigonal pyramid spelled correctly no ecf
3eiv	$N_2H_5^+HSO_4^-/H_2NNH_3^+HSO_4^-/H_3NNH_3^{2+}SO_4^{2-}$ Formula $$ All correct $$	2	ALLOW one mark for $N_2H_5HSO_4$ or $N_2H_6SO_4$ (with or without correct/incorrect charges)
3f	([HI] =) 26.25 x 0.110/25 or 0.1155 $\sqrt{V \times 0.1155} = 1000 \times 0.1$ or V = 1000 x 0.1/0.1155 $\sqrt{V} = 866/865.8 \text{ (cm}^3) \sqrt{V}$	3	ALLOW 0.116 for 0.1155 ALLOW 862.068 if 0.116 used ALLOW answer to 2 or more sf (870) ALLOW ecf from first marking point. ALLOW 865.1 for 3 marks (early rounding mp1) Correct answer on answer line scores 3 without reference to working.
		26	

4a	ester	1	
4bi	acid_anhydride	1	
4bii	mol phenol = 85000/94 = 904(.255) $$ mol cpd A = 690000/148 = 466(.216) $$ cpd A in excess AND because reacting mols is 2:1 ratio $$	3	ALLOW calculations in kilomoles but maximum 1 mark for mp1 and mp2 if units omitted and 0.904 AND 0.466 2:1 ratio can be shown from calculation ALLOW ecf
4biii	0.81 x 904/2 x 318 = 120/116 kg √√	2	 ALLOW ecf from numbers (but not wrong conclusion) in ii ALLOW one mark for incorrect evaluation of correct expression ALLOW for 1 mark correct evaluation of expression with 0.81 or 2 missing. ie 143.76 scores 1 (missing x 0.81); 232.85 scores 1 (missing /2) ALLOW answers to 2 or more sf
4ci	1 electron from each carbon $$ in ring(s) over all <u>carbon</u> atoms $$ (rings are) one above and one below $$	3	IGNORE 'clouds' 'rings above and below carbon (atoms)' scores mp2 and 3
4cii	1. <u>electrons</u> raised to higher <u>energy level</u> $$ 2. radiation/light/photon/frequencies in electromagnetic spectrum absorbed AND Δ E=hv/f $$ 3. more delocalisation in ion / larger chromophore $$ 4. reduces Δ E so light/visible radiation absorbed/lower frequency radiation absorbed ORA $$ 5. (for ion) complementary colour <u>reflected/ transmitted</u> OR <u>molecule</u> absorbs in uv $$	5	mp2 ALLOW E= hv/f if 'energy gap' clearly indicated QWC only award 4. if 3. scored mp5 ALLOW 'complimentary' or 'colour(s)/frequency(ies) not absorbed' for 'complementary'. DO NOT ALLOW mention of 'dropping back down' or 'emit' in mp5

4d	$pK_a = pH/9.3 \sqrt{K_a} = 5.0 \times 10^{-10} \sqrt{V_a}$	2	ALLOW 1sf Correct answer on answer line scores 2 without reference to working.
4ei	0.1 mol of HCl and NH ₃ react to form 0.1 mol NH ₄ Cl $$ double volume so 0.05 mol dm ³ $$	2	2 nd mark dependent on first
4eii	[NH ₃] [H ⁺]/[NH ₄ ⁺]	1	Must be square brackets
4eiii	$[H^+] = \sqrt{(5.6 \times 10^{-10} \times 0.05)} \text{ or } 5.3 (5.29) \times 10^{-6} \sqrt{pH} = 5.3 (5.276) \sqrt{q}$	2	ALLOW first mark if 'H ⁺ =' stated. ALLOW ecf for second mark if [H ⁺] or 'H ⁺ ' quoted incorrectly as 10^{-3} or smaller and correctly evaluated.
4eiv	pink colour of phth only develops after/around pH 9.3 $$ indicator needs to change colour around a pH of 5 for this titration. $$	2	ALLOW ecf from 4eiii provided an acidic pH ALLOW +/- 0.5 pH units
4fi	benzene sulfonic acid	1	ALLOW 'sulphonic'
4fii	conc/c sulfuric acid/H ₂ SO ₄ $$ heat/reflux $$	2	
4fiii	electrophilic substitution $$	1	
4fiv	no reaction $$ pink/purple colour $$	2	If starting colour given, must be orange/yellow or colourless.
		30	

5ai	increasing pressure increases yield (ORA) $$ fewer/less moles/molecules/particles on right/products ORA $$	2	Mark independently IGNORE 'fewer/less products'
5aii	increasing temperature increases rate $$ more frequent (AW) <u>collisions</u> with energy greater than E _a /activation enthalpy /more frequent <u>successful</u> collisions $$	2	
5aiii	disorder or number of ways of arranging particles/molecules/quanta of energy $\sqrt{-/\text{negative since fewer/less moles/molecules/particles on right/products \sqrt{-/\text{negative since fewer/less moles/molecules/particles on }}$	2	IGNORE 'fewer/less products'
5bi	butanal	1	
5bii	H H H H H H H H H H H H H H H H H H H	2	
5biii	CH ₃ CH ₂ CH ₂ COOH AND butanoic acid	1	ALLOW any unambiguous structure ALLOW molecular formula C ₄ H ₈ O ₂
5ci	$\begin{array}{c} \stackrel{\delta^{-} O}{\overset{\delta^{-}}{\overset{\delta^{-}}{\underset{H}{}}} \xrightarrow{H} & \stackrel{O^{-}}{\longrightarrow} & \stackrel{O^{-}}{\underset{H}{}} \xrightarrow{H_{2}O} & \stackrel{O^{+}}{\underset{H}{}} \xrightarrow{H_{2}O} & \stackrel{O^{+}}{\underset{H}{} \xrightarrow{H_{2}O} & \stackrel{O^{+}}{\underset{H}{}} \xrightarrow{H_{2}O} & \stackrel{O^{+}}{\underset{H}{} } \xrightarrow{H_{2}O} & \stackrel{O^{+}}$	4	Mark independently Curly arrow should start either from lone pair or negative charge on H ⁻ and end pointing at the C atom or the bond about to form between C and H IGNORE curly arrows and lone pairs on water

5cii 5di 5dii	$CH_{3}CH_{2}CH_{2}CH=NH / CH_{3}CH_{2}CH=CHNH_{2} \sqrt{\sqrt{1 + 1}}$ $heat/reflux with conc/c sulfuric acid/H_{2}SO_{4}$ $CH_{3}CH_{2}CH_{2}CH_{2}OH + CH_{3}COOH> CH_{3}COOCH_{2}CH_{2}CH_{2}CH_{3} + H_{2}O$ $correct formula of ester \sqrt{1 + 1}$ $completely correct equation \sqrt{1 + 1}$	2 1 2	ALLOW any unambiguous representation. for one mark, allow: any structure that shows attack by NH_3 on the right-hand carbon and the correct molecular formula eg C_3H_7CHNH or $CH_3CH=CHCH_2NH_2$ ALLOW conc HCI ALLOW any unambiguous structures ALLOW 1 mark for use of C_4H_9 for $CH_3CH_2CH_2CH_2$
5e	IR – ester (not acid), as no O–H > 3000 / has C=O ester at 1750 $$ ester: CH ₃ COOCH ₂ CH(CH ₃) ₂ (CH ₃) ₂ CH – $$ Remainder correct $$ <i>two from</i> $\sqrt{}$ • Peak at 2.0* indicates CHCO • 6 protons at 0.9* indicates 2 CH ₃ or 4 proton environments • 2 proton doublet at 3.9* indicates CH ₂ O next to CH * allow ±0.1	5	ALLOW range 2500 to 3200 for O-H DO NOT ALLOW ranges for chemical shift
5f	OCO-R-COO OCO-R-COO OCO-R-COO OCO-R-COO polymerisation occurs at these bonds 3 ester links to TMP $$ indication where polymerisation can continue $$	2	2 nd mark depends on first being correct ALLOW indication of further polymerisation from COOH
		26	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

