

GCE

Mathematics

Unit 4727: Further Pure Mathematics 3

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations and abbreviations

Annotation in scoris	Meaning
✓ and 💢	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0 M1	Method mark awarded 0, 1
A0 A1	Accuracy mark awarded 0, 1
B0 B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.
 - Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

	uestion	Answer	Marks	Guidance	
1		$(I =) \exp(\int \cot x dx)$ $= e^{\ln \sin x}$ $= \sin x$ $\frac{d}{dx} (y \sin x) = 9$ $y \sin x = 9x + A$ $x = \frac{1}{6}\pi, y = \pi \Rightarrow \frac{1}{2}\pi = \frac{3}{2}\pi + A \Rightarrow A = -\pi$ $y = (9x - \pi) \csc x$	M1 M1 A1 M1* A1 M1 *M1dep A1 [8]	Multiply and integrate Correct substitution of given point and constant evaluated Rearrange to isolate "y" oe	Must have "y ="
2	(ii)	1 5 7 11 1 1 5 7 11 5 5 1 11 7 7 7 11 1 5 5 1 11 1	[2] M1 A1	Twelve entries correct All correct Can be seen in table Or give order of each element (condone omission of e) Or all elements in each group are self-inverse or all have corresponding orders (shown) Can use " \cong " So isomorphic as both are V or K_4 or Klein (four-)group or the four-group	
			[3]		

Question		Answer	Marks	Guidance
		ALT Table is: 1	M1	
3		Isomorphism: $1 \leftrightarrow 1$, $(3,5,7) \leftrightarrow$ any permutation of $(5,7,11)$ or states that structure is same so isomorphic $AE: \lambda^2 + 6\lambda + 9 = 0$ $\lambda = -3 \text{ (repeated)}$ $CF: (A + Bx)e^{-3x}$ $PI: y = a\cos x + b\sin x$ $y' = -a\sin x + b\cos x$ $y''' = -a\cos x - b\sin x$ $In DE: -a\cos x - b\sin x$ $In DE: -a\cos x - b\sin x + 6(-a\sin x + b\cos x) + 9(a\cos x + b\sin x) = 25\sin x$ $-a + 6b + 9a = 0$ $-b - 6a + 9b = 25$ $a = -1.5, b = 2$	M1 A1 [3] M1 A1 A1ft B1 M1 A1	CF for their roots (with two constants) Differentiate twice and substitute Compare coefficients PI correct
		GS: $y = 2\sin x - 1.5\cos x + (A + Bx)e^{-3x}$	A1 A1	

	Question	n	Answer	Marks	Guidance		
4	(i)		$ \overrightarrow{AB} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \\ 2 \\ 1 \\ -1 \end{pmatrix} $ $ \overrightarrow{AC} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 3 \end{pmatrix} $	M1*	Any two vectors in plane	Third is $\begin{pmatrix} -1\\0\\2 \end{pmatrix} - \begin{pmatrix} 2\\-3\\1 \end{pmatrix} = \begin{pmatrix} -3\\3\\1 \end{pmatrix}$	
			$\mathbf{n} = \begin{pmatrix} 1 \\ -5 \\ 2 \end{pmatrix} \times \begin{pmatrix} -2 \\ -2 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} -11 \\ -7 \\ -12 \end{pmatrix} = -\begin{pmatrix} 11 \\ 7 \\ 12 \end{pmatrix}$	*M1dep	Depends on using attempted vectors in plane Condone 1 incorrect element if no working.	ALT $r = a + sb + tc$ Then eliminates one parameter to form 2 equations	
				A1	Any multiple – linked to second M1 only Condone omission of final minus sign in this argument		
			11x + 7y + 12z = 11(1) + 7(2) + 12(-1) 11x + 7y + 12z = 13	A1	Must show substitution or dot product www. Shown ag. Must have some reasoning e.g. AB and AC referenced or described as a vector in the plane, normal referenced, $\mathbf{r} = \mathbf{a}$ + $s\mathbf{b}$ + $t\mathbf{c}$	Then eliminates <i>t</i> to get plane (A2, with A1 awarded for each side of equation	
				[4]		SC4 or verifying that all three points lie on the given plane and checking for non-collinearity	
	(ii)		$\begin{pmatrix} 11 \\ 7 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -5 \\ 25 \end{pmatrix} = -5 \begin{pmatrix} 1 \\ -5 \end{pmatrix}$	M1	Attempts cross product of correct vectors		
			$ \begin{pmatrix} 11\\7\\12 \end{pmatrix} \times \begin{pmatrix} 3\\1\\1 \end{pmatrix} = \begin{pmatrix} -5\\25\\-10 \end{pmatrix} = -5\begin{pmatrix} 1\\-5\\2 \end{pmatrix} $	A1	Any multiple		
			$x = 0 \Rightarrow y = 7, z = -3$	B1	Find a point on line	or $\begin{pmatrix} \frac{7}{5} \\ 0 \\ -\frac{1}{5} \end{pmatrix}$, or $\begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$	
			$\mathbf{r} = \begin{pmatrix} 0 \\ 7 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -5 \\ 2 \end{pmatrix}$	A1	Oe vector equation		
				[4]	ALT 1: Find a point on line M1 Find a second point and use to find direction of line M1, A1 Write equation A1	A2: Reduce 2 equations to single equation in 2 variables.M1 Write these 2 variables using a parameter. M1 Find third variable parametrically. A1 Write equation. A1	

Question		n	Answer	Marks	Guidance			
	(iii)		$\cos \theta = \frac{\begin{vmatrix} 11 \\ 7 \\ 12 \end{vmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 1 \end{vmatrix}}{\sqrt{11^2 + 7^2 + 12^2} \sqrt{3^2 + 1^2 + 1^2}}$	M1				
			$\theta = 0.485 \text{ (or } 27.8^{\circ})$	A1 [2]		$0/2$ for $90 - \theta$		
5	(i)		$\left 2e^{\pi i/3}z\right = 2 z = 10$	B1	Or $ 2e^{\pi i/3} = 2$ and scale area at end	Soi by argand diagram		
			$Area = \frac{1}{2} \cdot 10 \cdot 5 \cdot \sin \frac{1}{3} \pi$	M1	Use of formula with correct angle	Or 1/2bh since right angled triangle		
			$=\frac{25}{2}\sqrt{3}$	A1		(21.7 inexact)		
			2	[3]				
	(ii)		R ₁	M1	Argand diagram with P , Q and attempt at one R at approximately $\frac{\pi}{4}$ to PQ			
			$ \frac{P + \frac{\pi}{4}}{R_2} $ $ w = -1 + i + (4 + 2i) e^{\pm i\pi/4} $	A1 M1	Diagram all correct	Including points labelled, angles labelled or R's in correct quadrant. Distances of Q and R's from P appear equal and gradients approximately correct condone omission of ± at M1 stage		
			$w = -1 + i + (4 + 2i)e^{\pm i\pi/4}$ = $\sqrt{2} - 1 + (3\sqrt{2} + 1)i$	A1		0.41 + 5.24i		
			or $3\sqrt{2} - 1 + (1 - \sqrt{2})i$	A1 [5]	SC1 if zero scored out of final 3 marks, for $(4+2i)e^{\pm i\pi/4} = \sqrt{2} + 3\sqrt{2}i$ or $3\sqrt{2} - \sqrt{2}i$	3.24 – 0.41i		
6	(i)		$\mathbf{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} = -24$	M1	// plane through A	ALT. $2(1+2\lambda) - 3(2-3\lambda) + 5(-4+5\lambda) = 7.$		
			distance $\frac{7-24}{\sqrt{2^2+3^2+5^2}}$	M1		$\lambda = \frac{31}{38}$ distance = $\sqrt{(2 \times \frac{31}{38})^2 + (3 \times \frac{31}{38})^2 + (5 \times \frac{31}{38})^2}$		
			$=\frac{31}{\sqrt{38}}$	A1	Oe such as 5.03			
				[3]				

Ç	Question		Answer	Marks	Guidance		
	(ii)		$\begin{pmatrix} 2 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	M1	For RHS	0.1150	
			$\sin \theta = \frac{\left \left(\frac{-3}{5} \right) \cdot \left(\frac{-1}{2} \right) \right }{\sqrt{2^2 + 3^2 + 5^2} \sqrt{1^2 + 1^2 + 2^2}}$	M1	Suitable method for finding required angle		
			$\theta = 1.46 \text{ (or } 83.4^{\circ})$	A1			
	(iii)		(1) (1)	[3]			
	(111)		$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$	B1			
			$2(1+\lambda) - 3(2-\lambda) + 5(-4+2\lambda) = 7$	M1	Substitute in plane equation		
			$2(1+\lambda) - 3(2-\lambda) + 5(-4+2\lambda) = 7$ $\lambda = \frac{31}{15}$	A1			
			Intersect at $\left(\frac{46}{15}, -\frac{1}{15}, \frac{2}{15}\right)$	A1	Or position vector.		
			(15 15 15/	[4]	Accept (3.07, -0.0667, 0.133)		
7	(i)		$2\cos\theta = e^{i\theta} + e^{-i\theta}$	[-]			
			$2^{6}\cos^{6}\theta = e^{6i\theta} + 6e^{4i\theta} + 15e^{2i\theta} + 20 + 15e^{-2i\theta} + 6e^{-4i\theta} + e^{-6i\theta}$	M1	Expand $(e^{i\theta} + e^{-i\theta})^6$		
			$+15e^{-1.0} + 6e^{-1.0} + e^{-6.0}$ $2^{6}\cos^{6}\theta = (e^{6i\theta} + e^{-6i\theta}) +$	A1			
			$(6e^{4i\theta} + 6e^{-4i\theta}) + (15e^{2i\theta} + 15e^{-2i\theta}) + 20$				
			$\Rightarrow 64\cos^6\theta = 2\cos6\theta + 6(2\cos4\theta)$	M1	for converting to multiple angles		
			$+15(2\cos 2\theta) + 20$ ⇒ result	A1	Complete argument including pairing up of	Must equate	
					e.g. terms in z^4 and z^{-4}		
	(ii)		$\cos 6\theta + 6\cos 4\theta + 2\cos 2\theta = 3$	[4]			
	, ,		$\Rightarrow \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10 = 3 + 6\cos 4\theta + 10\cos 4\theta + 10\cos$	M1*	Use result from (i)		
			$13\cos 2\theta + 10$ $\Rightarrow 32\cos^6\theta = 13(1+\cos 2\theta)$	A1 *M1dep	Oe simplified form Use double angle identity		
			$\Rightarrow 32\cos^6\theta = 13(2\cos^2\theta)$	A1	ose dodole diigie racinity		
			$\Rightarrow \cos \theta = 0 \text{ or } \cos^4 \theta = \frac{13}{16}$	A1			
			$\theta = \frac{1}{2}\pi, 0.319, 2.82$	[5]			
				[5]			
8	(i)		16	B1			
-	()			[1]			

Q	uestion	Answer	Marks	Guidance		
	(ii)	$\begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & bc \end{pmatrix} \in H \text{ so closed}$	B1			
		$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in H$ so contains identity	B1			
		$\begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & b^{-1} \end{pmatrix} \in H$ so contains inverses	B1		If three items dealt with as in scheme, but fail to say "in <i>H</i> " then deduct one mark. Must conclude to gain all 3 marks.	
		so is (sub) group			Must conclude and not address commutativity to gain all 3 marks.	
	(***)		[3]	XX CX		
	(iii)	K is a factor of their "16" H = 4 so 4 is a factor of $ K $	M1	Use of Lagrange		
			M1	or $ K \ge 4$, if 1 st M1 awarded		
		so $ K = 4, 8 \text{ or } 16$	A1	May be implied		
		proper subgroups so proper factors so $ K = 8$	A1	Complete argument.		
		30 N = 0	[4]			
	(iv)	Identifies correct subgroup If $\begin{pmatrix} i & 0 \\ 0 & h \end{pmatrix} \in K$	B1		At any stage in solution	
		then $\begin{pmatrix} i & 0 \\ 0 & b \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 \\ 0 & b^2 \end{pmatrix} \in K$	M1	Considers $a = i$ or $-i$ with aim to reject it	Possibly in isolation from matrix	
		If $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in K$ for some b				
		then multiplying by elements of <i>H</i> gives	M1			
		$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ for all b				
		But this gives more than 8 elements				
		So $\begin{pmatrix} i & 0 \\ 0 & h \end{pmatrix} \notin K$	A1			
		Similarly $\begin{pmatrix} -i & 0 \\ 0 & b \end{pmatrix} \notin K$	M1dep	Dep on both previous M marks being gained		
		$K = \left\{ \begin{pmatrix} \pm 1 & 0 \\ 0 & b \end{pmatrix} : b^4 = 1 \right\}$	A1	For full argument		
			[6]			
		Total	72			

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

