OXFORD CAMBRIDGE AND RSA EXAMINATIONS
ADVANCED SUBSIDIARY GCE

G481
PHYSICS A
Mechanics

THURSDAY 21 MAY 2009: Afternoon
DURATION: 1 hour
SUITABLE FOR VISUALLY IMPAIRED CANDIDATES

Candidates answer on the question paper

OCR SUPPLIED MATERIALS:
Formulae, Data and Relationships Booklet

OTHER MATERIALS REQUIRED:
Electronic calculator
Ruler
Protractor

READ INSTRUCTIONS OVERLEAF
INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes on the first page.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.

• Answer ALL the questions.

• Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [] at the end of each question or part question.

• The total number of marks for this paper is 60.

• Where you see this icon you will be awarded marks for the quality of written communication in your answer.

This means for example, you should

• ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear;

• organise information clearly and coherently, using specialist vocabulary when appropriate.

• You may use an electronic calculator.
Answer **ALL** the questions.

1. (a) State a similarity and a difference between *distance* and *displacement*.

 (i) similarity: ...
 ...[1]

 (ii) difference: ...
 ...[1]

(b) Fig. 1.1 shows two airports A and C.
An aircraft flies due north from \(A\) for a distance of 360 km \((3.6 \times 10^5 \text{ m})\) to point \(B\). Its average speed between \(A\) and \(B\) is 170 m s\(^{-1}\). At \(B\) the aircraft is forced to change course and flies due east for a distance of 100 km to arrive at \(C\).

(i) Calculate the time of the journey from \(A\) to \(B\).

\[
\text{time} = \underline{\quad} \text{ s} \quad [1]
\]

(ii) Draw a labelled displacement vector triangle below. Use it to determine the magnitude of the displacement in km of the aircraft at \(C\) from \(A\).

\[
\text{displacement} = \underline{\quad} \text{ km} \quad [3]
\]

[Total: 6]
2 Fig. 2.1 shows a graph of velocity against time for an object travelling in a straight line.

![Graph of velocity against time](image)

Fig. 2.1

The object has a constant acceleration \(a \). In a time \(t \) its velocity increases from \(u \) to \(v \).

(a) Describe how the graph of Fig. 2.1 can be used to determine

(i) the acceleration \(a \) of the object

\[\text{In your answer, you should use appropriate technical terms, spelled correctly.} \]

\[\text{[1]} \]
(ii) the displacement s of the object.

\[s = ut + \frac{1}{2}at^2 \]

[2]
(c) In order to estimate the acceleration \(g \) of free fall, a student drops a large stone from a tall building. The height of the building is known to be 32 m. Using a stopwatch, the time taken for the stone to fall to the ground is 2.8 s.

(i) Use this information to determine the acceleration of free fall.

\[
\text{acceleration} = \ \text{_______________ m s}^{-2} \ [2]
\]

(ii) One possible reason why your answer to (c)(i) is smaller than the accepted value of 9.81 m s\(^{-2}\) is the reaction time of the student. State another reason why the answer is smaller than 9.81 m s\(^{-2}\).

\[\text{__} \ [1]\]

[Total: 7]
3 A skydiver jumps from a stationary hot-air balloon several kilometres above the ground.

(a) In terms of acceleration and forces, explain the motion of the skydiver

IMMEDIATELY after jumping

at a time BEFORE terminal velocity is reached

10
(b) In the final stage of the fall, the skydiver is falling through air at a constant speed. The skydiver’s kinetic energy does not change even though there is a decrease in the gravitational potential energy. State what happens to this loss of gravitational potential energy.
(c) Fig. 3.1 shows a sketch graph of the variation of the velocity v of the skydiver with time t.

![Graph of velocity vs time](image)

Fig. 3.1

Suggest the changes to the graph of Fig. 3.1, if any, for a more massive (heavier) skydiver of the same shape.

[2]

[Total: 9]
4 (a) Define *work done* by a force.

(b) Define *power*.

(c) Explain why the efficiency of a mechanical device can never be 100%.
(d) A car has a total mass of 810 kg. Its speed changes from zero to 30 m s\(^{-1}\) in a time of 12 s.

(i) Calculate the change in the kinetic energy of the car.

\[
\text{change in kinetic energy} = \text{_____________} \text{ J [2]}
\]

(ii) Calculate the average power generated by the car engine. Assume that the power generated by the engine of the car is entirely used in increasing the kinetic energy of the car.

\[
\text{power} = \text{_____________} \text{ W [1]}
\]
(iii) The actual efficiency of the car is 25%. The car takes 18 kg of petrol to fill its tank. The energy provided per kilogram of petrol is 46 MJ kg\(^{-1}\). The drag force acting on the car at a constant speed of 30 m s\(^{-1}\) is 500 N.

1. Calculate the work done against the drag force per second.

\[
\text{work done per second} = \underline{\phantom{000\text{J}}} \text{J s}^{-1} [1]
\]

2. Calculate the total distance the car can travel on a full tank of petrol when travelling at a constant speed of 30 m s\(^{-1}\).

\[
\text{distance} = \underline{\phantom{0000000000000000000000\text{m}}} \text{m} [3]
\]

[Total: 11]
5 (a) Fig. 5.1 shows a wooden block motionless on an inclined ramp.

![Diagram of a block on an inclined ramp with labels for block, ramp, \(\theta \), and \(W \).]

The angle between the ramp and the horizontal is \(\theta \).

(i) The weight \(W \) of the block is already shown on Fig. 5.1. Complete the diagram by showing the normal contact (reaction) force \(N \) and the frictional force \(F \) acting on the block. \([2]\)

(ii) Write an equation to show how \(F \) is related to \(W \) and \(\theta \).

__

__ \([1]\)
(b) Fig. 5.2 shows a kitchen cupboard securely mounted to a vertical wall. The cupboard rests on a support at \(A \).

The total weight of the cupboard and its contents is 200 N. The line of action of its weight is at a distance of 12 cm from \(A \). The screw securing the cupboard to the wall is at a vertical distance of 75 cm from \(A \).
(i) State the principle of moments.

In your answer, you should use appropriate technical terms, spelled correctly.

(ii) The direction of the force F provided by the screw on the cupboard is horizontal as shown in Fig. 5.2. Take moments about A. Determine the value of F.

\[F = \text{________________________} \text{ N} \quad [2] \]

(iii) The cross-sectional area under the head of the screw in contact with the cupboard is $6.0 \times 10^{-5} \text{ m}^2$. Calculate the pressure on the cupboard under the screw head.

\[\text{pressure} = \text{________________________} \text{ Pa} \quad [2] \]
(iv) State and explain how your answer to (iii) would change, if at all, if the same screw was secured much closer to A.

[Total: 11]
In February 1999 NASA launched its Stardust spacecraft on a mission to collect dust particles from the comet Tempel 1. After a journey of 5.0×10^{12} m that took 6.9 years, Stardust returned to Earth with samples of the dust particles embedded in a special low-density gel. When a dust particle hits the gel, it buries itself in the gel creating a cone-shaped track as shown in Fig. 6.1. The length of the track is typically 200 times the diameter of the dust particle.

![Diagram](not to scale)

Fig. 6.1

(a) Calculate the average speed in m s$^{-1}$ of Stardust during its voyage.

speed = ________________ m s$^{-1}$ [2]
(b) Calculate the average stopping force produced by the gel for a dust particle of diameter 0.70 mm and mass 4.0×10^{-6} kg travelling at a velocity of $6.1 \times 10^3 \text{m s}^{-1}$ relative to Stardust.

\[
\text{force} = \underline{\hspace{1cm}} \text{ N} [3]
\]

[Total: 5]
7. (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material.

![Stress against strain graph](image)

Fig. 7.1

(b) Circle from the list below a material that is ductile.

- jelly
- copper
- ceramic
- glass

(c) Define *ultimate tensile strength* of a material.

- [Definition]

(d) State *Hooke's law*.

- [Equation]
(e) Fig. 7.2 shows a mechanism for firing a table tennis ball vertically into the air.

The spring has a force constant of 75 N m\(^{-1}\). The ball is placed on the platform at the top of the spring.
(i) The spring is compressed by 0.085 m by pulling the platform. Calculate the force exerted by the compressed spring on the ball **IMMEDIATELY** after the spring is released. Assume both the spring and the platform have negligible mass.

\[
\text{force} = \underline{\text{_______________}} \text{ N} \quad [2]
\]

(ii) The mass of the ball is \(2.5 \times 10^{-3}\) kg. Calculate the initial acceleration of the ball.

\[
\text{acceleration} = \underline{\text{_______________}} \text{ m s}^{-2} \quad [1]
\]
(iii) Calculate the maximum height that could be gained by the ball. Assume all the elastic potential energy of the spring is converted into gravitational potential energy of the ball.

height = ________________________ m [3]

[Total: 11]
Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.