ADVANCED SUBSIDIARY GCE GEOLOGY Rocks - Processes and Products F792 Candidates answer on the question paper ## OCR Supplied Materials: None #### **Other Materials Required:** - Electronic Calculator - Ruler (cm/mm) ## Wednesday 20 May 2009 Afternoon **Duration:** 1 hour 45 minutes | Candidate
Forename | | | Candidate
Surname | | | | |-----------------------|----|--|----------------------|-------|--|--| | Centre Number | er | | Candidate N | umber | | | #### **INSTRUCTIONS TO CANDIDATES** - Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above. - Use black ink. Pencil may be used for graphs and diagrams only. - Read each question carefully and make sure that you know what you have to do before starting your answer. - Answer all the questions. - Do not write in the bar codes. - Write your answer to each question in the space provided, however additional paper may be used if necessary. #### **INFORMATION FOR CANDIDATES** - The number of marks is given in brackets [] at the end of each question or part question. - The total number of marks for this paper is **100**. Where you see this icon you will be awarded marks for the quality of written communication in your answer. - You may use an electronic calculator. - You are advised to show all the steps in any calculations. - This document consists of 20 pages. Any blank pages are indicated. | FOR EX | KAMINEF | r'S USE | |--------|---------|---------| | Qu. | Max. | Mark | | 1 | 14 | | | 2 | 14 | | | 3 | 17 | | | 4 | 19 | | | 5 | 16 | | | 6 | 10 | | | 7 | 10 | | | TOTAL | 100 | | ### Answer all the questions. 1 (a) Complete the flow diagram below by entering the names of the correct broad rock groups in boxes A, B, C and D. | | (iii) | Expl | ain the process | es that cause | minerals to | be aligned ir | n metamorphic | c rocks. | |-----|-----------|------------------|------------------|--|--------------|----------------------------|---------------|----------| [2] | | (c) | Belo | w are | e thin section d | iagrams of two | rocks. | | | | | | E | | minerals a | nass of mafic
and plagioclas
eldspar | e | F | | 1mm | | | pla
fe | giocla
eldspa | ase
ar | | | ne grained
Icite cement | | | | | (i) | Circle | e the broad roo | k group to wh | ich each rod | k belongs. | | | | | | E | igneous | met | amorphic | | sedimentary | | | | | F | igneous | met | amorphic | | sedimentary | [2] | | | (ii) | | two reasons for | | | | | | | | | 1 | | | | | | | | | | 2 | | | | | | | | | (iii) | Give | two reasons for | | | | | [2] | | | | 1 | 2 | | | | | | [2] | 2 (a) The diagram below shows different types of sediment transport. | wa <u>ter sur</u> | ace | | |-------------------|--|--------------------------| | suspensio | on | | | | current direction | kov | | rive <u>r bed</u> | | • • sand grain • pebbles | | (i) | Define the term suspension. | | | | | | | | | [2] | | (ii) | Explain why the same grain can be transported by suspension and by times. | | | | | | | | | | | (iii) | Describe and explain one difference between grains transported by i | | | | | | | | reason | | (b) The diagram below shows sediments deposited by a meandering river. | | (i) | Label on the diagram where sediment is being eroded. | 1] | |-----|-------------|--|-------| | | (ii) | List two sedimentary structures that will be found in the meandering river depos shown. | | | | | [| | | | (iii) | Explain why the sediment at 1 is older than the sediment at 2. | [| 2] | | (c) | The
form | sequence of sediments shown on the diagram is a fining up sequence. Explain howned. | it |
വ | | | | | - J I | 3 The graph below shows the cumulative frequency curve for sediment **G**. The table shows the grain size distribution for sediment **H**. | grain
size
(phi φ) | mass
(%) | cumulative
mass
(%) | |--------------------------|-------------|---------------------------| | 0 | 0 | | | 1 | 2 | | | 2 | 14 | | | 3 | 78 | | | 4 | 6 | | | 5 | 0 | | | 6 | 0 | | sediment H | | (a) | (i |) L | Jsing | the | data | |--|-----|----|-----|-------|-----|------| |--|-----|----|-----|-------|-----|------| - complete the table to show the cumulative mass % for sediment **H**. - plot the data on the graph | draw the cumulative frequency cur | ve. | |---|-----| |---|-----| |
 | | |------|----| | | | | | | |
 | | | | | |
 | | | | | |
 | [2 | | (iii) | Using the cumulative frequency curves and the information below, calculate the coefficient | |-------|--| | | of sorting for sediments G and H . Show your working. | coefficient of sorting = $$\frac{\phi 84 - \phi 16}{2}$$ (Where ϕ 84 is the grain size of the cumulative mass of 84% of the sample and ϕ 16 is the grain size of the cumulative mass of 16% of the sample.) coefficient of sorting $$G = \dots$$ coefficient of sorting $H = \dots$ [3] | coefficient of sorting | description | |------------------------|-------------------| | < 0.50 | well sorted | | 0.50 - 1.00 | moderately sorted | | >1.00 | poorly sorted | | (iv) | Describe the difference in sorting between sediment G and sediment H . | | |------|--|-----| | | | [1] | | (v) | Identify possible environments in which sediments G and H were formed. | | | | G | | | | Н | [2] | © OCR 2009 Turn over **(b)** Sandstones can be classified using composition and grain shape. The thin section diagrams below show three different sandstones. | environment in which $\bf J$ was deposited. | (1) | |--|-------| | | | | | | | | | | Lies the share steristics shown in the diagram to symbol much acadetana K was demosited | (::\ | | Use the characteristics shown in the diagram to explain why sandstone ${\bf K}$ was deposited in the sea. | (ii) | | | | | [1] | | | Compare the grain shape of sandstones ${\bf K}$ and ${\bf L}$ and explain how this is used to determine the degree of transport. | (iii) | | [1] | | | Analyse the characteristics shown in the diagram to determine the environment of deposition of sandstone ${\bf L}.$ | (iv) | | | | | | | | [2] | | [Total: 17] 4 The diagram below shows a sequence of processes that operate in the rock cycle. (a) (i) Complete the sequence by entering the name of the correct process in each box above. Choose from the list below. ## crystallisation magma accumulation metamorphism recrystallisation | | transport | [4] | |-------|--------------------------------------|-----| | (ii) | Describe the process of compaction. | | | | | | | | | | | | | | | | | [2] | | (iii) | Describe the process of cementation. | | | | | | | | | | | | | | | | | [2] | **(b)** The diagram below shows zones of metamorphic rocks around a granite intruded into shales. (i) Name and describe the characteristic rocks and index minerals found in each of the three zones. Draw a labelled diagram and describe the metamorphic rock produced if the parent rock was sandstone. 0 5 mm (iii) Explain the difference between a metamorphic aureole and a baked margin. [Total: 19] 5 The diagram below shows part of Bowen's Reaction Series. The table shows some of the characteristic properties of the rock forming minerals. | Specific gravity | Cleavage | Hardness | Composition | Colour | Name | |------------------|---|----------|------------------------------------|----------------------------|---------------------------| | 2.7 | none | 7 | silicon dioxide | glassy grey or white | quartz | | 2.6 | two good | 6 | K rich aluminium silicate | pink or white | K feldspar | | 2.7 | two good | 6 | Na or Ca rich aluminium silicate | white or grey | plagioclase
feldspar | | 3 | one perfect
splits into thin elastic
sheets | 2.5 | K, Mg, Fe rich aluminium silicate | dark brown to black | biotite mica | | 2.8 | one perfect
splits into thin elastic
sheets | 2.5 | K rich aluminium silicate | pale silvery | muscovite
mica | | 3.2 | two good
at 120° | 5.5 | Na or Ca rich aluminium silicate | black or
greenish black | hornblende
(amphibole) | | 3.4 | two good
at 90° | 6 | Ca, Mg, Fe rich aluminium silicate | black or
greenish black | augite
(pyroxene) | | 3.4 | none | 6.5 | Mg, Al silicate | green | olivine | #### **Bowen's Reaction Series** | (a) (i) | Draw a labelled arrow on the diagram of Bowen's Reaction Series to show increasing temperature. [1] | |---------|---| | (ii) | Identify the minerals 1 – 4 on Bowen's Reaction Series. Write your answers in the boxes on the previous page. [3] | | (iii) | Explain how plagioclase feldspar forms a continuous reaction series. | | | | | | | | | | | | [2] | | (b) (i) | Name two of the minerals likely to be found in mafic igneous rocks. Give a reason for each of your answers. | | | 1 | | | | | | 2 | | | [2] | | (ii) | Using the data provided explain how you would distinguish between the white minerals quartz and plagioclase feldspar. | | | | | | | | | | | | [2] | | (c) | (i) | The photograph below is of a granite. Identify from the photograph the correct mine from the descriptions below. Put the correct letter in each box. | erals | |-----|-------|--|-------| | | | black, with perfect cleavage that forms flakes | | | | | pink phenocrysts of hardness 6 | [2] | | | | | | | 0 | 1 1 1 | Q | | | | (ii) | State two other minerals that are present in the granite. | | | | | 1 2 | [1] | | (d) | | scribe how fractional crystallisation and gravity settling allow an intermediate rock to med from a mafic magma. | [0] | Describe the grades of regional metamorphism and the rocks produced at each grade. You may 6 | In your a | answer you sho | ию таке сіе | ar now tne r | ocks are iinki | ea to metamo | rpnic grade. | | |-----------|----------------|-------------|--------------|----------------|--------------|--------------|--| , | | ••••• | ••••• | ••••• |
 |
 | |------|-------------| | | | |
 | | |
 |
 | | | | | | | | |
 |
[10] | | | [Total: 10] | Describe and explain the essential features of strato-volcanoes and shield volcanoes. You should 7 use diagrams to illustrate your answer. In your answer you should refer to: - magma viscosity - lava type | gas content shape and structure of the volcanoes in your answer. | |---|
 | | |------|-------------| | | | | | | |
 [10] | | | [Total: 10] | ## **END OF QUESTION PAPER** ## 19 ## **BLANK PAGE** PLEASE DO NOT WRITE ON THIS PAGE #### PLEASE DO NOT WRITE ON THIS PAGE #### Copyright Information OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB. OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © OCR 2009