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Section A (36 marks)

1 (i) Write down the matrix for reflection in the y-axis. [1]

(ii) Write down the matrix for enlargement, scale factor 3, centred on the origin. [1]

(iii) Find the matrix for reflection in the y-axis, followed by enlargement, scale factor 3, centred on
the origin. [2]

2 Indicate on a single Argand diagram

(i) the set of points for which |� − (−3 + 2j)| = 2, [3]

(ii) the set of points for which arg(� − 2j) = π, [3]

(iii) the two points for which |� − (−3 + 2j)| = 2 and arg(� − 2j) = π. [1]

3 Find the equation of the line of invariant points under the transformation given by the matrix

M = (−1 −1
2 2

). [3]

4 Find the values of A, B, C and D in the identity 3x3 − x2 + 2 ≡ A(x − 1)3 + (x3 + Bx2 + Cx + D). [5]

5 You are given that A = ( 1 2 4
3 2 5
4 1 2

) and B = (−1 0 2
14 −14 7−5 7 −4

).

(i) Calculate AB. [3]

(ii) Write down A−1. [2]

6 The roots of the cubic equation 2x3 + x2 − 3x + 1 = 0 are α, β and γ . Find the cubic equation whose
roots are 2α , 2β and 2γ , expressing your answer in a form with integer coefficients. [5]

7 (i) Show that
1

3r − 1
− 1

3r + 2
≡ 3(3r − 1)(3r + 2) for all integers r. [2]

(ii) Hence use the method of differences to find
n

∑
r=1

1(3r − 1)(3r + 2) . [5]
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Section B (36 marks)

8 A curve has equation y = 2x2

(x − 3)(x + 2) .

(i) Write down the equations of the three asymptotes. [3]

(ii) Determine whether the curve approaches the horizontal asymptote from above or below for

(A) large positive values of x,

(B) large negative values of x. [3]

(iii) Sketch the curve. [3]

(iv) Solve the inequality
2x2

(x − 3)(x + 2) < 0. [3]

9 Two complex numbers, α and β , are given by α = 2 − 2j and β = −1 + j.

α and β are both roots of a quartic equation x4 + Ax3 + Bx2 + Cx + D = 0, where A, B, C and D are
real numbers.

(i) Write down the other two roots. [2]

(ii) Represent these four roots on an Argand diagram. [2]

(iii) Find the values of A, B, C and D. [7]

10 (i) Using the standard formulae for
n

∑
r=1

r2 and
n

∑
r=1

r3, prove that

n

∑
r=1

r2(r + 1) = 1
12

n(n + 1)(n + 2)(3n + 1). [5]

(ii) Prove the same result by mathematical induction. [8]
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