

Physics A

Advanced GCE H558

Advanced Subsidiary GCE H158

Mark Schemes for the Units

January 2010

H158/H558/MS/10J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Physics A (H558)

Advanced Subsidiary GCE Physics (H158)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
G481 Mechanics	1
G482 Electrons, Waves and Photons	8
G484 The Newtonian World	14
Grade Thresholds	19

G481 Mechanics

Question		ion	Expected Answers	Marks	Additional Guidance
1	(a)		Correct lines from: • joule (J) to N m • watt (W) to J s ⁻¹ • newton (N) to kg m s ⁻²	B2	Note: 2 marks for all correct 1 mark for two correct 0 marks for none or one correct
	(b)	(i)	weight in the range 200 to 1200 (N)	B1	
		(ii)	area in the range 0.01 to 0.08 (m ²)	B1	
		(iii)	pressure = (b)(i)/b(ii)	B1	Allow: 1 sf answer
			Total	5	

G481

G	Question		Expected Answers	Marks	Additional Guidance
2	(a)		W = mg weight = 1.50×9.81 = 14.72 (N) or 14. 7 (N) or 15 (N)	B1	Allow: Use of 9.8 (m s ⁻²) Allow: Bald 15 (N); but not '1.50 × 10 = 15(N)'
	(b)	(i)	<u>Net</u> / <u>resultant</u> force (on B) is less / (net) force (on B) is less than its weight / there is tension (in the string) / there is a vertical / upward / opposing force (on B)	B1	Note: Must have reference to force
		(ii) (iii)	$s = ut + \frac{1}{2}at^{2} \text{ and } u = 0$ $1.40 = \frac{1}{2} \times 1.09 \times t^{2}$ t = 1.60 (s) $v^{2} = 2 \times 1.09 \times 1.40 / v = 0 + 1.09 \times 1.60$ $v = 1.75 \text{ (m s}^{-1}) / v = 1.74 \text{ (m s}^{-1})$	C1 C1 A1 C1 A1	Allow: 2 marks for 1.75/1.09' if answer from (iii) is used Allow: 2 sf answer Allow: 2 marks if <u>2.80 m</u> is used; time = 2.27 (s) Possible ecf Allow: 1.7 or 1.8 (m s ⁻¹)
		(iv)	change in velocity = 2.47 + 1.50 (= 3.97 m s ⁻¹) acceleration = $\frac{3.97}{0.030}$ acceleration = 132 (m s ⁻²)	C1 A1	Ignore sign for change in velocity Allow: 130 (m s ⁻²) Special case: acceleration = $\frac{2.47 - 1.50}{0.030}$ = 32.3 or 32 (m s ⁻²) scores 1 mark
			Total	9	

Q	Question		Expected Answers	Marks	Additional Guidance
3	(a)		mass = <u>140 × 3.0</u> (= 420 kg)	B1	Allow: $\frac{420}{3.0} = 140$ (reverse argument)
	(b)	(i)	total mass = $500 + 560 + 420$ (= 1480 kg) total weight = $1480 \times 9.8(1)$ / total weight = 14520 (N) net force = 1480×1.8 / net force = 2664 (N) tension = $14520 + 2664$ tension = $1.7(2) \times 10^4$ (N)	C1 C1 C1 C1 A0	Note: Omitting one of the masses – can score maximum of 3 Omitting two masses – can score maximum of 2 Examples: 3 marks if mass of cable is omitted tension = 1908 +10400 = 1.23×10^4 (N) 2 marks if mass of cable and people are omitted tension = 900 + 4905 = 5.8×10^3 (N) Note: 4 marks for 'tension = $(m(g + a) =) 1480 \times (9.81 + 1.8)'$
	(ii)		stress = $\frac{1.72 \times 10^4}{3.8 \times 10^{-4}}$ / stress = $\frac{(b)(i)}{3.8 \times 10^{-4}}$ stress = 4.5(3) × 10 ⁷ (Pa)	C1 A1	Possible ecf from (i) Note : A tension of 1.7×10^4 (N) gives an answer of $4.4(7) \times 10^7$ (Pa)
			IOCAL	1	

C	uest	ion	Expected Answers	Marks	Additional Guidance
4	(a)		The mass (of the electron) increases as its speed approaches <u>c</u> / <u>speed of light</u> / 3×10^8 <u>m s⁻¹</u>	M1 A1	Not: mass 'changes' / 'electron becomes heavier'
	(b)	(i)	A line with correct arrow in the <i>y</i> direction has length of 14 to 16 'small squares'	B1	
			A line with correct arrow in the <i>x</i> direction has length of 24 to 26 'small squares'	B1	Note: If correct arrows are not shown, then maximum mark is 1
		(ii)	component = $(8.0 \cos 31 =)6.86$ (m s ⁻¹) or 6.9 (m s ⁻¹)	B1	Allow: 6.85 as BOD
	(c)	(i)	Correct vector triangle drawn 2.14 (kN) 90^{0} (resultant force) ² = 2.14 ² + 1.50 ²	B1 C1	Note : Expect at least one 'label' on the sketch, eg: 2.14, 1.5, 90 ⁰ The 'orientation' of the triangle is not important The directions of all three arrows are required
			resultant force = 2.61 (kN)	A1	Allow: 2 sf answer of 2.6 (kN)Allow a scale drawing; 2 marks if answer is within ± 0.1 kN and 1mark if ± 0.2 kNAlternative for the C1 A1 marks:1.50cos(55) or 2.14cos(35)C1resultant force = 1.50cos(55) + 2.14cos(35)resultant force = 2.61 (kN)
		(ii)	2.6(1) (kN)	B1	Possible ecf
			(Constant velocity implies) zero <u>net</u> force / zero acceleration	B1	Not : <i>'resultant force = drag'</i> since the first B1 assumes this
			Total	10	

Question		ion	Expected Answers	Marks	Additional Guidance
5	(a)		Energy cannot be created or destroyed; it can only be transferred/transformed into other forms or The (total) energy of a system remains constant or (total) initial energy = (total) final energy (AW)	B1	Allow: 'Energy cannot be created / destroyed / lost'
	(b)		Any suitable example of something strained (eg: stretched elastic band)	B1	
	(c)	(i)	$E_{p=} mgh \text{ and } E_{k} = \frac{1}{2}mv^{2}$ (Allow Δh for h)	B1	Not: $E_k = mgh$
		(ii)	$mgh = \frac{1}{2}mv^{2}$ $v^{2} = 2gh \text{or} v = \sqrt{2gh}$	B1 B1	
	(d)	(i)	$m = \rho V$ $m = 1.0 \times 10^{3} \times (1.2 \times 10^{-2} \times 2.0 \times 10^{7})$ mass of water = 2.4 × 10 ⁸ (kg)	C1 C1 A0	Allow any subject for the density equation
		(ii)	loss in potential energy = $2.4 \times 10^8 \times 9.81 \times 2.5 \times 10^3$	C1	Allow 1 mark for '5.89 × 10 ¹² (J)'
			30% of GPE = $0.3 \times 5.89 \times 10^{12}$ (=1.77 × 10 ¹²)	C1	Allow 2 marks for '1.77 \times 10 ¹² (J)'
			power = $\frac{1.77 \times 10^{12}}{900}$ power = 1.9(63) × 10 ⁹ (W) (≈ 2 GW)	C1 A0	Note: $\frac{5.89 \times 10^{12}}{900}$ (= 6.5 GW) scores 2 marks
		(iii)	Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)	B1	Note: Do not allow reference to 'inefficiency' / 'cost'
			Total	11	

Qı	Question		Expected Answers	Marks	Additional Guidance
6	(a)		The graph shows length and not extension of the spring / spring has original length (of 2.0 cm) (AW)	B1	Allow: 'length cannot be zero'
	(b)		Straight line (graph) / linear graph / force ∞ extension / constant gradient (graph)	B1	Not 'force ∝ <u>length</u> '
	(c)		force constant = $\frac{2.0}{0.04}$	C1	Note: The mark is for any correct substitution
			force constant = 50 (N m ⁻¹)	A1	Allow: 1 mark for 0.5 (N m ⁻¹) – 10 ⁿ error Allow 1 mark for $5/12 \times 10^{-2} = 41.7$ or $4/10 \times 10^{-2} = 40$ or $3/8 \times 10^{-2} = 37.5$ or $2/6 \times 10^{-2} = 33.3$ or $1/4 \times 10^{-2} = 25$
	(d)		work done = $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$ or 'area under graph'	C1	
			work done = $\frac{1}{2} \times 3.0 \times 0.06$ or $\frac{1}{2} \times 50 \times 0.06^2$		Possible ecf
			work done = 0.09 (J)	A1	Note: 1 sf answer is allowed
	(e)		Find the gradient / slope (of the tangent / graph)	B1	
			Maximum speed at 1.0s / 3.0s / 5.0s / steepest 'part' of graph / displacement = 0	B1	Allow:2 marks for 'steepest / maximum gradient'
			Total	8	

Q	Question		Expected Answers	Marks	Additional Guidance
7	(a)	(i)	It has maximum / large / increased <u>stress</u> at this point	B1	Allow: it has 'same force but thinner/smaller area' Not: Thin / small area
		(ii)	The tape has (permanent) extension / deformation when the force / stress is removed (AW)	B1	Note: Need reference to force or stress removed Allow: ' does not return to original size / shape / length when force / stress is removed'
	(b)		 Measurement: ✓ Diameter Any two from: original / initial length (Not: final length) extension / initial and final lengths weight / mass 	B1 B1 X 2	The term <i>diameter</i> to be included and spelled correctly to gain the mark
			 Equipment: ✓ Micrometer / vernier (calliper) (for the diameter of the wire) Any two from: Ruler / (metre) rule / tape measure (for measuring the original length / extension) Travelling microscope (for measuring extension) Scales / balance (for measuring the mass & mg mention is mead on for measuring the original to the mass of the measuring the measure (for measuring the mass of the measuring the measure (for measuring the mass of the measure (for measuring the mass of the measure (for measuring the mass of the measure (for measuring the measure (for measuring the measure (for measure)) 	B1 B1 × 2	The term <i>micrometer / vernier</i> (<i>calliper</i>) to be included and spelled correctly to the gain mark. (ALLOW: Micrometer is used to measure area / radius / thickness – as BOD)
			Newtonmeter (for the weight of hanging masses) / 'known' weights used		Allow: 'known masses & mg equation' but not 'known masses'
			 Determining Young modulus: stress = force/(cross-sectional) area and strain = extension/original length 	B1	Allow: stress = <i>F/A</i> and strain = <i>x/L</i>
			• Young modulus = stress/strain / Young modulus is equal to the gradient from stress-strain graph (in the linear region)	B1	Special case for determining Young modulus:Gradient from force-extension graph is $\frac{EA}{L}$ B1Young modulus = gradient × L/A B1
			Total	10	

G482 Electrons, Waves and Photons

Q	Question		Expected Answers	Marks	Additional Guidance
1					
	а	i	E = (Pt =) 36 x 3600	C1	allow I = 3 A and E = VIt, etc.
			$= 1.3 \times 10^5 (J)$	A1	accept 129600 (J)
		ii	Q = E/V = 1.3 x 10 ⁵ /12 or Q =It =3 x 3600	C1	ecf (a)(i)
			$= 1.1 \times 10^4$	A1	accept 1.08 x 10 ⁴
			unit: C	B1	allow A s not J V ⁻¹
		iii	$Q/e = 1.1 \times 10^4/1.6 \times 10^{-19}$	C1	ecf (a)(ii)
			$= 6.9 \times 10^{22}$	A1	accept 6.75 or 6.8 x 10 ²² using 10800
	b	i	the average displacement/distance travelled of the electrons along the		no mark for quoting formula
			wire per second;	B1	allow in one second
			(over time/on average) they move slowly in one direction through the		
			metal/Cu lattice (when there is a p.d. across the wire);	B1	
			(because) they collide constantly/in a short distance with the lattice/AW	B1	max 2 marks from 3 marking points
		ii	select I = $nAev (= 3.0 A)$	C1	1 mark for correct formula
			$v = 3.0/8.0 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19}$	C1	1 mark for correct substitutions into formula
			$= 2.1 \times 10^{-3} (\text{m s}^{-1})$	A1	1 mark for correct answer to 2 or more SF
			Total question 1	12	

Mark Scheme

Question		on	Expected Answers	Marks	Additional Guidance
2					
	а		$\rho = RA/I$	M1	full word definition gains both marks
			with terms defined	A1	allow A is area as adequate; no unit cubes
	b	i	either the cable consists of (38) strands in parallel;	B1	max 1 mark for 38 x 0.052 = 1.98 with no
			or the area of the cable is 38 times the area of a strand or vice versa;		further explanation
			so the resistance of 1 strand is 38 times bigger, (i.e. 1.98 Ω km ⁻¹)		allow with either and or
			or the resistance is inversely proportional to the area	B1	allow only with or
		ii	$A = \rho I/R = 2.6 \times 10^{-8} \times 1000/2.0$	C1	allow 1 mark max. for R = 0.052 giving
			$= 1.3 \times 10^{-5} (m^2)$	A1	$A = 5.0 \times 10^{-4} (m^2)$
					give 1 mark max. for 1.3 x 10 ⁻⁸ (m ²)
	С	i	$P = VI = 400x \ 10^3 \ x \ 440$	C1	P = VI not adequate for first mark
			= 1.8 x 10 ⁸ (W) or 180 M(W)	A1	expect 176
		ii	2000/176 = 11.4 so 12 required	B1	ecf(c)(i); using 180 gives 11.1
		iii	$P = I^2 R$	C1	accept power/cable = 2000/12 = 167 MW
			$= 440^2 \times 0.052$	C1	I = 167M/400k = 417 A
			$= 1.0 \times 10^4 \text{ W (km^{-1}) or 10 kW (km^{-1})}$	A1	$P = 417^2 \times 0.052 = 9.0(3) \text{ kW (km}^{-1})$
					N.B. answer mark includes consistent unit
		iv	power lost per cable = $10 \text{ k} \times 100 \times 12 = 12.0 \text{ MW}$	C1	ecf(c)(ii)(iii)
			fraction remaining = $(2000 - 12)/2000 = 0.994 \times 100 = 0.994 \text{ so } 99.4\%$	A1	allow second mark for 'correct' answer as
			or power lost per strand = 10 k x100 = 1.0 MW		fraction not percentage with BOD sign
			fraction remaining = $(176 - 1)/176 = 0.994$ so 99.4%		allow 1 mark max. if give correct % lost
					given rather than % remaining
					allow 1 mark max. for
					100 x (2000 – 1)/2000 = 99.95%
			Total question 2	14	

Question		on	Expected Answers	Marks	Additional Guidance
3					
	а		resistors in series add to 20 Ω and current is 0.60 A	B1	accept potential divider stated or formula
			so p.d. across XY is 0.60 x 12 (= 7.2 V)	B1	gives (12 /20) x 12 V (= 7.2)V
	b	i	the resistance of the LDR decreases	M1	
			(so total resistance in circuit decreases) and current increases	A1	
		ii	resistance of LDR and 12 Ω (in parallel)/across XY decreases	B1	alternative I increases so p.d. across 8.0 Ω
			so has smaller share of supply p.d. (and p.d. across XY falls)	B1	increases; so p.d. across XY falls
			Total question 3	6	
	Questi	on	Expected Answers	Marks	Additional Guidance
4					
	а	i	no current/no light/does not conduct until V is greater than 1.5 V	B1	allow 1.4 to 1.6 V (QWC mark)
			brightness/intensity of LED increases with current/voltage above 1.5 V	B1	(alternative QWC mark)
			above 1.8 V current rises almost linearly with increase in p.d./AW	B1	
			the LED does not obey Ohm's law	M1	
			as I is not proportional to V/AW	A1	
			below 1.5 V, LED acts as an infinite R/ very high R/acts as open switch	B1	max 5 marks which must include at least
			above 1.5 V, LED resistance decreases (with increasing current/voltage)	B1	one of the first 2 marking points
		ii 1	infinite resistance	B1	
		2	$I = 23.0 \pm 1.0 (mA)$	C1	
			$R = 1.9 \times 10^{3} / (23 \pm 1) = 83 \pm 4 \Omega$	A1	apply POT error for 0.083 Ω
	b		LED symbol with correct orientation	B1	diode symbol + circle + at least one arrow
			resistor (need not be labelled) and ammeter in series with it	B1	pointing away
			voltmeter in parallel across LED only	B1	
	С		the resistor limits the <u>current</u> in the circuit (when the LED conducts)	B1	
			otherwise it could overheat/burn out/be damaged/AW	B1	
	d		in fig 4.3 the voltage range is from zero to maximum possible	B1	allow 6.0 V
			in fig. 4.2 the resistance variation is small/AW	B1	accept the LED is part of a potential divider
			(so) in fig. 4.2 voltage variation across LED is small	B1	accept only at the top end of the range/AW
			Total question 4	16	

	Question		Expected Answers	Marks	Additional Guidance
5	5				
	а	i	λ distance between (neighbouring) identical points/points with same phase (on the wave)	B1	accept peak/crest to peak/crest, etc.
			f number of waves passing a point /cycles/vibrations (at a point) per unit	B1	accept number of waves produced by the
			time/second	B1	wave source per unit time/second
			v distance travelled by the wave (energy) per unit time/second		not $v = f \lambda$ and not 'in one second'
		ii	in 1 second f waves are produced each of one wavelength λ	M1	accept time for one λ to pass is 1/f
			distance travelled by first wave in one second is f $\lambda = v$	A1	so v = $\lambda/(1/f)$ =f λ
					give max 1 mark for plausible derivations
					purely in terms of algebra (no words)
	b	i	infra red is part of the e-m spectrum	B1	_
			lower f or longer λ than the visible region/light or suitable value or range	B1	accept any single λ in range 10 ⁻⁵ m to 7.5 x
			of λ		10 ⁻⁷ m or any reasonable wider range
		ii1	$\lambda = c/f = 3.0 \times 10^8 / 6.7 \times 10^{13}$	C1	_
			4.5×10^{-6} (m)	A1	accept 4.48 x 10 ⁻⁶ or more s.f.
		2	$T = 1/f = 1/6.7 \times 10^{13}$	C1	
			$T = 1.5 \times 10^{-14} (s)$	A1	accept 1.49 x 10 ⁻¹⁴
		iii	at least one cycle of a sine or cosine curve as judged by eye	B1	ecf (b)(ii)2
			amplitude 8.0 x 10 ⁻¹² m	B1	
			period = $1.5 \times 10^{-14} s$	B1	
			Total question 5	14	

Question		ion	Expected Answers	Marks	Additional Guidance
6					
	а	i	when (two) waves meet/combine/interact/superpose, etc. (at a point)	M1	allow for A1 mark: (vector) sum/resultant
			there is a change in overall intensity/displacement	A1	displacement(s)/AW
		ii	constant phase difference/relationship (between the waves)	B1	just stating same frequency not sufficient
	b	i	path difference of $n\lambda$ for constructive interference	M1	allow waves arrive in phase
			producing either maximum amplitude/intensity or a maximum	A1	
			path difference of $(2n + 1)\lambda/2$ for destructive interference	M1	allow waves arrive in anti-/out of phase
			producing either minimum amplitude/intensity or a minimum	A1	max 3 marks; max 1 mark for two correct
					marking points but with n omitted
		ii	$x = \lambda D/a = 0.030 \times 5.0/0.20$	C1	give 1 mark max for 0.75 mm but zero for
			=0.75 (m)	A1	750 m
		iii 1	intensity increases by factor of 4	B1	
			position unchanged	B1	
		2	intensity unchanged	B1	
			distance apart of maxima is doubled	B1	
		3	intensity unchanged	B1	
			maxima move to positions of minima (and vice versa)	B1	
			Total question 6	14	

C	luesti	ion	Expected Answers	Marks	Additional Guidance
7					
	а	i	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8}/6.3 \times 10^{-7}$	M1	mark is for correct substitution into formula
			$= 3.16 \times 10^{-19} (J)$	A1	min of 2 sig figs; allow 3.1 for h = 6.6×10^{-34}
		ii	$1.0 \times 10^{-3}/3(.2) \times 10^{-19}$ (= 3.1 x 10 ¹⁵)	B1	accept 3 x 10 ¹⁵ ; the mark is for the
					expression
		iii	energy levels explanation: electrons have discrete energies in atom/AW	B1	QWC mark
			each photon produced by electron moving between levels	B1	good diagram can score marks
			photon energy equal to energy difference between levels	B1	allow $E_1 - E_2$ = hf or similar
			electron loses energy/making transition in correct direction	B1	
		iv	blue light has a higher frequency/shorter wavelength than red light	B1	
			energy per photon is higher (so fewer needed to produce one mW)	B1	
	b	i	vertical arrow up approximately through X	B1	allow tolerance e.g. ± 10°
		ii	I = 0.2 ne; = 0.2 x 3.2 x 10 ¹⁵ x 1.6 x 10 ⁻¹⁹	C2	max 2 marks if forget 0.2 factor
			= $1.0(24) \times 10^{-4}$ (A) or 0.10 mA (9.6 x 10^{-5} if using 3 x 10^{15})	A1	0.51 mA (0.48) if forget 0.2 factor
		iii	reflection/absorption at top layer; light/some photons reach bottom layer;	B1	award mark for any sensible comment; see
			photons below threshold energy/photons absorbed by electrons without		examples given
			release; recombination of ion pairs in insulating layer;		
			scattering of light/photons out of insulating layer		
			Total question 7	14	
G	uesti	ion	Expected Answers	Marks	Additional Guidance
8					
	а	i	paths spread out after passing through a gap or around an obstacle/AW	B1	
		ii	wavelength of electrons	M1	allow electrons behave as waves/AW
			must be comparable/of the order of magnitude of the atomic spacing	A1	allow must be about 10 ⁻¹⁰ m
	b		$\lambda = h/mv$	C1	mark for selecting formula
			$v = 6.6(3) \times 10^{-34} / 9.1(1) \times 10^{-31} \times 1.2 \times 10^{-10}$	M1	correct manipulation and subs. shown
			$= 6.0 \text{ or } 6.1 \times 10^6 \text{ (m s}^{-1}\text{)}$	A1	give all 3 marks for answers to 3 figs or
					more: i.e. 6.04, 6.06 or 6.07
	С	i	$eV = \frac{1}{2}mv^2$	C1	mark for algebraic equation
			$V = mv^2/2e = 9.1 \times 10^{-31} \times (6.0 \times 10^6)^2/2 \times 1.6 \times 10^{-19}$	C1	mark for correct substitution
			$= 1.0(2) \times 10^2 (V)$	A1	give 1 mark max for k.e. = 1.6(4) x 10 ⁻¹⁷ J
					using 6.1 gives 104 (V)
		ii	electrons should be repelled by cathode and/or attracted by anode or		award mark if answer indicates this idea
			they will be attracted back to the cathode/slowed down if cathode positive	B1	
			Total question 8	10	

G484 The Newtonian World

Qı	lest	ion	Expected Answers	Marks	Additional guidance
1 a i		i	Force is proportional to the <u>rate of change</u> of <u>momentum</u>	B1	Allow "equal" instead of proportional, allow
			(QWC This mark can only be scored if momentum is spelled correctly)		"change in momentum over time" (WTTE)
					Do not allow F = ma or in words
		ii	When one body exerts a force on another the other body exerts an equal (in		Must refer to two bodies. Do not allow a bare
			magnitude) and opposite (in direction) force on the first body (WTTE)	B1	"Action and reaction are equal and opposite".
	b	i	area: number of squares correctly counted: 20 - 24 (500 – 600)	C1	First mark for correct number of squares
			= 2.2 Ns {allow 2.0 to 2.4}	A1	Second mark for correct conversion to Ns
					If 2 Δ s assumed, area = 1.68 Ns and scores
					1 mark
					1680 scores 0 (2 errors) but 2200 scores 1
					mark
		:=	Impulse QWC must be spelled correctly	B1	No not allow change of momentum.
		iii	recall of Impulse = change in momentum OR I = mv OR mv –mu	C1	Allow 'Area = mv'
			(mv = 2.2 hence v = 2.2/0.046) v = 47.8 ms-1 (hence about 50)	A1	Allow ecf from cand's value for (b)(i):
			(2.0 gives 43.5, 2.1.45.7, 2.3.50, 2.4.52.2)		e.g. mv = 1.68 v = 36.5 ms ⁻¹ and scores 2
			(2.0 gives 10.0, 2.1 10.1, 2.0 00, 2.1 02.2)		marks
					mv = 2200 v = 47800 ms ⁻¹ also scores
					2marks! (<u>ecf</u>)
		iv	initial horizontal velocity = 50cos42 = (37.2 ms ⁻¹)	C1	Allow 1 mark for correct identification of
			initial vertical velocity = 50sin42 = (33.5 ms ⁻¹)	C1	cosine and sine components of v, without
			time taken to reach maximum height = 33.5/9.8 (= 3.41 s)	C1	substitution.
					Allow ecf for cand's value of v throughout
			total time to reach ground = 2x 3.41 = 6.82 s hence distance = 50cos42xtotal	A1	e.g if 47.8 is used for v, distance = 232 m and
			time = 37.2x6.82 = 253 m		this scores <u>four</u> marks.
					if 47800 is used distance = $2.32 \times 10^8 \text{ m}!$
			any valid assumption: eq no air resistance / horizontal velocity is constant/	B1	
			acceleration due to gravity is 9.8 (or 10) ms ⁻² / ball follows a parabolic or		Also allow "only the gravitational force is
			symmetrical path (WTTE).		acting" "no friction" "only gravity"
			Total	12	

Qu	esti	ion	Expected Answers		Additional guidance
2	а	i	(v = 2πr/t) t = 2π60/0.26 = 1450 s	B1	Correct answer is 1449.96 hence allow 1.4 X 10 ³ Do not allow a bare 1.5 x10 ³
		ii	(ii) correct substitution into F =mv ² /r: eg F = (9.7x10 ³ x0.26 ²)/60 F = 10.9 N	C1 A1	Allow 11 N
	b	i	THREE correct arrows at A, B and C all pointing towards the centre (judged by eye)	B1	Ignore starting point of arrow
		ii	1. Greatest reaction force is at C because it supports weight of sock AND provides the required upward resultant (centripetal) force (WTTE)	M1 A1	This is a mandatory M mark. The second mark cannot be gained unless this is scored. Any indication that candidates think that the centripetal force is a third force loses this second and possibly the next mark.
			2. Least at A because sock's weight provides part of the required downward resultant (centripetal) force (WTTE)	B1	They must make correct reference to the resultant force that provides the required centripetal force/acceleration. Allow answers using the equation $F = mv^2/r$ such as N _c - mg (at C) = centripetal force OR mv^2/r OR mg +N _A (at A) = centripetal force OR mv^2/r
			Total	7	

Qu	Question		Expected Answers	Marks	Additional guidance
3	а		arrows (at least one) indicating direction is towards the planet. All lines looking as though they would meet at the centre judged by eye	B1 B1	At least 4 drawn and care taken Some of the lines must be outside the planet.
	b	i	(mg = GMm/r ² and hence) $M = gr^{2}/G$ correct substitution M = 24.9x(7.14 x 10 ⁷) ² /6.67x10 ⁻¹¹ = 1.9 x 10²⁷ Kg (i.e about 2x10²⁷)	C1 M1 A1	Equation needs to be rearranged as shown for C1 mark
		ii	correct substitution into V= $(4/3)\pi r^3 = (4/3)\pi (7.14 \times 10^7)^3 \{= 1.52 \times 10^{24} \text{ m}^3\}$ density = mass/volume = 1.9 ×10 ²⁷ /1.52 × 10 ²⁴ = 1250 kg m ⁻³	C1 A1	If m= 2 x 10 ²⁷ kg is used d = 1312 scores 2 marks
			Total	7	

Qu	est	ion	Expected Answers	Marks	Additional guidance
4	а		The resultant force is zero (WTTE) Forces are weight and force from the spring (allow tension)	B1 B1	For the first mark allow - sum of forces is zero, - upward force = downward force, - forces cancel each other BUT do not allow forces are balanced Allow force of gravity for weight
	b	i	acceleration is (directly) proportional to displacement and is directed in the opposite direction to the displacement. (WTTE)	M1 A1	allow $a=-(2\pi f)^2 x$, provided a and x are identified and –ve sign must be explained. Do not allow "acceleration is prop to negative displacement for second mark. Allow always towards the equilibrium position
		ii	x= $acos2\pi ft \Rightarrow 2\pi f$ = 7.85 (expressed in any form) f = (7.85/2 π) = 1.25 (1.249Hz)	M1 A1	Do not allow use of Fig 4.2 to show T= 0.8s and hence f=1.25 Hz. This scores 0.
		iii	correct subst ⁿ in $V_{max} = (2\pi f)A \Rightarrow V_{max} = 2\pi x 1.25 x 0.012$ $V_{max} = 0.094 \text{ ms}^{-1}$	C1 A1	Many will forget to change 12 mm into 0.012m and have $v = 94 \text{ ms}^{-1}$ this scores 1 mark.
	C		roughly sinusoidal graph of <u>correct period</u> ie 0.8s <u>90° out of phase</u> with displacement graph (i.e. starts at origin with -ve initial gradient) <u>maximum velocity</u> correctly shown as 0.094 {allow ecf from (iii)}	B1 B1 B1	
			Total	11	

Qu	esti	on	Expected Answers	Marks	Additional guidance
5	а	i	correct substitution in E = mc $\Delta\theta$: eg E = 0.08x4180x40	C1	Allow 80x4180/0.05x2460 (13376/4.92) for this
			ratio = 0.08x4180x40/5 x 10 ⁻⁵ x2460x40 = 2.7(2) x 10³		C1 mark.
					1: 2700 does not score the second mark.
		ii	Any valid advantage: eg		
			car cooling systems	B1	First mark for valid situation
			because it absorbs large amounts of heat for a small rise in temp	B1	Second mark for correct explanation of why the
			OR ideal fluid for central heating systems		high value of the shc is helpful.
			because it releases large amounts of heat for a small drop in temp.		
			OR helps to maintain constant body temperature		
			since body is mainly water which absorbs lots of heat for small temp rise		
	b		labelled diagram (2 marks):		
			liquid in vessel with <u>electrical</u> heater (submerged) and thermometer	B1	Allow use of joule meter if convincingly
			ammeter connected in series between supply and heater AND voltmeter	B1	connected to heater and power supply i.e. 2
			connected across heater.		wires from power supply two wires to heater
			list of measurements (3 marks):		
			mass of liquid.	B1	Allow such things as "find mass" "known mass"
			initial and final temperature/change of temp (of the liquid)	B1	Allow Such things as time for 2 minutes" "known
			I, V and t values OR energy meter readings OR power and time	B1	TOK temp rise, time for 2 minutes known
					power, etc.
			explanation (1 mark):		
			$E = mc\Delta\theta$ rearranged to $c = E/m\Delta\theta$	B1	
			uncertainties (2 marks) each stated with explanation of remedy' e 0		
			- heat losses (makes E or λθ uncertain) (solved by) insulating heaker/use lid		Allow ItV/m∆θ.
			- false temp reading (solved by) stir the liquid	D1	Do not allow "repeat the experiment".
			- temp continues to rise after heater switched off measure highest value		Give credit for valid suggestions if mentioned
			- thermal capacity of vessel (solved by) take this into account in calculation	B1 B1	anywhere in the description of the experiment.
				111ax 2	
			Total	12	

Mark Scheme

Que	estior	า	Expected Answers	Marks	Additional guidance
6	а		 (n) number of <u>moles</u> (T) absolute temperature OR thermodynamic temp OR temp measured in Kelvin 	B1 B1	Accept K for Kelvin
	b	i	(When gas is heated) molecules gain KE/move faster this would cause more collisions/sec (with the walls) collisions exert more force/greater change in momentum per collision For constant pressure fewer collisions/sec are required Constant pressure is achieved by the increase in volume OR with a bigger volume there are fewer collisions/sec	B1 B1 B1 B1 B1 <i>max 4</i>	If no reference to <u>rate</u> of collisions, max of 3 marks This must be explained fully but can be done with reference to P = $(1/3)\rho < c^2 >$
		ii	correct substitution in pV/T = constant: OR V/T = constant e.g. $1.2x10^{-4}$ /293 = V/363 V= (363/293)x1.2x10^{-4} = 1.49 x10^{-4} m ³ .	C1 A1	Both temps must be in Kelvin. Allow 1.5 x 10^{-4} m ³
	С		Use of 1/2m <c<sup>2> = 3/2 kT Correct substitution: <math>\sqrt{<c^2>} = \sqrt{(3kT/m)} = \sqrt{(3x1.38 \times 10^{-23}x363/4.7x10^{-26})}</c^2></math> <math>\sqrt{<c^2>} = 565 \text{ ms}^{-1}</c^2></math></c<sup>	C1 C1 A1	If 90 [°] C is used $\sqrt{\langle c^2 \rangle} = 282 \text{ ms}^{-1}$ and scores 2 marks Allow 570 ms ⁻¹ If they do not square root, they get 319225 ms ⁻¹ and score 2 marks
			Total	11	

Grade Thresholds

Advanced GCE Physics H158 H558 January 2010 Examination Series

Unit Threshold Marks

U	nit	Maximum Mark	Α	В	С	D	E	U
G481	Raw	60	44	38	33	28	23	0
	UMS	90	72	63	54	45	36	0
G482	Raw	100	56	49	42	36	30	0
	UMS	150	120	105	90	75	60	0
G484	Raw	60	45	41	37	34	31	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
H158	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
H158	15.7	36.4	61.9	83.5	95.8	100	661

661 candidates aggregated this series

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums/index.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

