

June 2023 only

GCSE (9–1) Combined Science A (Physics) (Gateway Science)

J250 05/06/11/12

Equation Sheet

INSTRUCTIONS

• Do not send this Equation Sheet for marking. Keep it in the centre or recycle it.

INFORMATION

- This Equation Sheet is for the June 2023 examination series only.
- This Equation Sheet has 4 pages.

Equations in physics

Key: **HT** = Higher Tier only

P1 Matter	
density = $\frac{\text{mass}}{\text{volume}}$	$ \rho = \frac{m}{V} $
change in thermal energy = mass × specific heat capacity × change in temperature	$\Delta E = mc\Delta\theta$
thermal energy for a change in state = mass × specific latent heat	E = m1

	P2 Forces	
	distance travelled = speed × time	s = vt
	acceleration = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{v - u}{t}$
	$(final\ velocity)^2 - (initial\ velocity)^2 = 2 \times acceleration \times distance$	$v^2 - u^2 = 2as$
	kinetic energy = $\frac{1}{2}$ × mass × (speed) ²	$E = \frac{1}{2} m v^2$
	force = mass × acceleration	F = ma
нт	momentum = mass × velocity	p = mv
	work done = force × distance (along the line of action of the force)	W = Fs
	$power = \frac{work done}{time}$	$P = \frac{W}{t}$
	force exerted by a spring = spring constant × extension	F = kx
	energy transferred in stretching = $\frac{1}{2}$ × spring constant × (extension) ²	$E = \frac{1}{2} kx^2$

	P2 Forces	
	gravitational force = mass × gravitational field strength	W = mg
	gravitational potential energy = mass × gravitational field strength × height	E = mgh

	P3 Electricity and magnetism	
	charge flow = current × time	Q = It
	potential difference = current × resistance	V=IR
	energy transferred = charge × potential difference	E = QV
	power = potential difference × current	P = VI
	power = $(current)^2 \times resistance$	$P = I^2 R$
	energy transferred = power × time	E = Pt
НТ	force on a conductor (at right angles to a magnetic field) carrying a current: force = magnetic flux density × current × length	F = BIl

P4 Waves in matter	
wave speed = frequency × wavelength	$v = f\lambda$

ယ

P5 Energy	
efficiency = useful output energy transfer input energy transfer	

P6 Global challenges	
potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_{p}I_{p} = V_{s}I_{s}$

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

 ${\tt OCR}\ is\ part\ of\ Cambridge\ University\ Press\ \&\ Assessment,\ which\ is\ itself\ a\ department\ of\ the\ University\ of\ Cambridge.$

© OCR 2023 J250 05/06/11/12