

Sample question paper and mark scheme

DRAFT

LEVEL 3 CAMBRIDGE ADVANCED NATIONAL (AAQ) IN

APPLIED SCIENCE

Certificate H051 Extended Certificate H151

For first teaching in 2025

F180: Fundamentals of science

Introduction

This is Sample Assessment Material (SAM). It is an example exam paper that we publish alongside a new specification to help illustrate the intended style and structure of our question papers.

During the lifetime of the qualification, updates to the question paper template may happen. We always recommend you look at the most recent set of past papers where available.

We also produce two further specific resources to support you with using this SAM:

- An assessment story. We explain the research we have undertaken during the development of the qualification and how consultation with teachers, students and schools have helped shape our assessment approach.
- Annotated SAMs. We take you through the key points of the assessment and highlight the different types
 of questions your students will experience in the exam.

Tell us what you think

Your feedback plays an important role in how we develop, market, support and resource qualifications now and into the future. Here at OCR, we want teachers and students to enjoy and get the best out of our qualifications and resources, but to do that we need honest opinions to tell us whether we're on the right track or not. That's where you come in.

You can email your thoughts to **ProductDevelopment@OCR.org.uk** or visit the **OCR feedback page** to learn more about how you can help us improve our qualifications.

Designed and tested with teachers and students

Helping young people develop an ethical view of the world

Equality, diversity, inclusion and belonging (EDIB) are part of everything we do

Summary of updates

Date	Version	Page number	Summary of change
July 2023	1 DRAFT	All	Creation of document

Teacher support

We have a range of support services to help you at every stage, from preparation to delivery.

Our teacher support is designed to make teaching our qualifications straightforward, whether you are an experienced teacher, new to teaching, new to OCR, or not a subject specialist of the qualification you are teaching.

We offer free access to services such as <u>Access to Scripts</u>, <u>ExamBuilder</u> and <u>ActiveResults</u>, and you'll find comprehensive teaching resources and a range of professional development courses on our teacher website, <u>Teach Cambridge</u>.

Our OCR subject advisors provide support and information to centres, including:

- Specification and non-exam assessment advice
- Updates on resource developments and training opportunities
- Information on our subject networks giving an opportunity to share ideas and expertise.

Further help and support

Visit our subject pages to find out more about the assessment and request trial access to **Teach Cambridge**.

Not a registered or approved OCR centre? Discover the benefits of becoming one on the OCR website.

Have more questions about teaching OCR qualifications? Explore our **Online Support Centre** or contact our **Customer Support team**.

Contact details are available on the **final page** of the SAM.

Work with us

As one of the major UK exam boards, OCR is responsible for creating and marking exams taken by over a million students each year. We work with over 10,000 professionals to create, check, mark and moderate our assessments.

If you would like to find out more about becoming an OCR examiner, please visit **our website** for more information

People and planet

OCR is part of Cambridge University Press & Assessment, which has clear commitments to champion sustainability, diversity, trust and respect for our people and planet.

We are committed to supporting a curriculum that helps young people develop an ethical view of the world. This enables them to take social responsibility, understand environmental issues and prepare them for the green jobs of the future.

Our equality, diversity, inclusion and belonging principles are that we:

- · are respectful and considerate
- celebrate differences and promote positive attitudes to belonging
- include perspectives that reflect the diverse cultural and lifestyle backgrounds of our society
- challenge prejudicial views and unconscious biases
- promote a safe and supportive approach to learning
- are accessible and fair, creating positive experiences for all
- provide opportunities for everyone to perform at their best
- are contemporary, relevant and equip everyone to live and thrive in a global, diverse world
- create a shared sense of identity in a modern mixed society with one humanity.

To learn more, including our work on accessibility in our assessment materials, visit our <u>People and planet page</u>.

Level 3 Cambridge Advanced National (AAQ) in Applied Science (Certificate)

Level 3 Cambridge Advanced National (AAQ) in Applied Science (Extended Certificate)

H051/H151 Unit F180: Fundamentals of science

Sample Assessment Material (SAM)

Time allowed: 1 hour 30 minutes

You may use:

- · scientific calculator
- ruler

You should have:

· the Data, Formulae and Relationship Booklet

Please write clea	arly in black ink. Do not write in the barcodes.
Centre number	Candidate number
First name(s)	
Last name	
Date of birth	D D M M Y Y Y

INSTRUCTIONS

- Use black ink.
- Write your answer to each question in the space provided. You can use extra paper if you need
 to, but you must clearly show your candidate number, the centre number and the question
 numbers.
- In the live exam there might be lined pages at the end of the question paper for you to use if you need extra space. Remember, you must clearly show the question numbers.
- Answer all the questions.

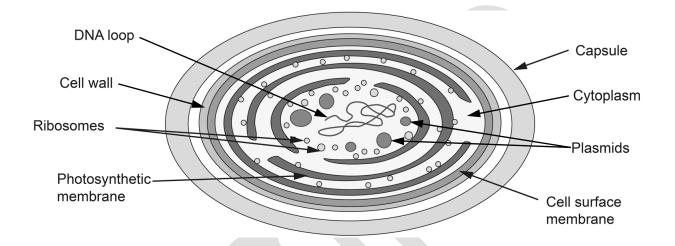
INFORMATION

- The total mark for this paper is **70**.
- The marks for each question are shown in brackets [].
- This document consists of 17 pages.

ADVICE

· Read each question carefully before you start your answer.

Answer **all** the questions.


Section A (Biology) - 20 marks

1 A student is studying endosymbiosis in cells.

Endosymbiosis is seen when one organism lives inside of another and both organisms benefit from this relationship.

(a) Chloroplasts are thought to have evolved from a type of bacteria called cyanobacteria.

The diagram shows the structures of a cyanobacteria cell.

(i)	Which three structures found in cyanobacteria are also found in plant cells?			
	Tick (✓) three boxes.			
	Capsule			
	Cell surface membrane			
	Cell wall			
	Cytoplasm			
	DNA loop			
	Plasmids		101	
			[3]	

(ii)	Some structures seen in the cyanobacteria cell in the diagram share the same
	function with components found in a chloroplast.

Complete the table to match the function of structures seen in the cyanobacteria cell to the component found in a chloroplast.

Component found in a chloroplast	Structure seen in the cyanobacteria cell
Outer membrane	
Stroma	
Thylakoids	

[3]

(b)	A scanning elec	tron microscop	e (SEM) cai	n be used to	o view an	individual	cyanobacte	ria
	cell.							

State one advantage and one disadvantage	of	using	an	SEM	compa	red t	to a
transmission electron microscope (TEM).							

Advantage	 	
9		
Disadvantage		
2.00.0.00.00.00		
	 	 101
		[4]

2	A gr	oup	of scie	ntists are ir	nvestigatin	g sperm c	ells in hum	nans.			
	Nor	ormal-functioning sperm cells contain many mitochondria, packed into the middle piece.									
	(a)	The	The aerobic phase of cellular respiration takes place inside each mitochondrion.								
		State two structural components of the mitochondria involved in the aerobic phase of respiration.									
		1	1								
		2									
								[2]			
	(b)	The pied		ists estima	te that nor	mal sperm	cells cont	tain 60 mitochondria in the middle			
			table s		tively lowe	r numbers	of mitocho	ondria found in a sample of abnormal			
			41	32	42	49	27				
			46	35	44	48	37				
		(ii)	found sperm	-	al sperm c	ifference be ells and th	etween the estimate	mitochondria =[1] ne mean number of mitochondria ed number of mitochondria in normal			
							Percentaç	ge difference = % [1]			
		(iii)	Explai sperm	-	act of low I	numbers o	f mitochor	ndria on the activity of abnormal			
								[2]			
								····· [4]			

(a)	Pea	protein provides a wide range of amino acids in the human diet.	
	(i)	The amino acids can form dipeptides.	
		Describe the process of dipeptide formation.	
			[2]
	(ii)	Pea proteins have a secondary level of organisation.	
		What is the secondary level of organisation in proteins?	
		Tick (✓) one box.	
		Folding of a single polypeptide chain to form an α -helix or β -pleated sheet	
		More than one polypeptide chain folded to form a 3D shape	
		The sequence of amino acids in a polypeptide chain	
		3D folding of a single polypeptide chain due to side-chain interactions	
			[1]
(b)	Pea	plants are grown as an agricultural crop.	
	Pea	plants are often vulnerable to diseases.	
	(i)	The distribution of diseased pea plants in a field is determined using a random sampling technique.	
		State one benefit and one limitation of using random sampling.	
		Benefit	
		Limitation	
			[2]
	(ii)	State one climatic abiotic factor affecting the distribution of pea plants in an agricultural field.	L
			[1]

3

Pea protein is extracted from yellow peas.

Section B (Chemistry) – 20 marks

a)	The	two most abunda	nt isotopes of s	ulfur are sulfur-32 and	d sultur-34.
	(i)	Explain why sulfu	ır-32 and sulfur	-34 are described as	sotopes of sulfur.
					[1]
	/ii\	Λ scientist analys			-
	(ii)	isotopes present.	They determin	e the relative masses	and finds that there are three and percentage (%)
		abundances of th	ese isotopes:		
		Isotope	Symbol	Abundance (%)	
		Sulfur-32	³² S	95.02	
		Sulfur-33	³³ S	0.77	
			340		
		Sulfur-34	³⁴ S	4.21	
			ative atomic ma	ss of the sample of s	ılfur.
		Calculate the rela	ative atomic ma	ss of the sample of s	ılfur.
		Calculate the rela	ative atomic ma	ss of the sample of s	
b)	Con	Calculate the rela	ative atomic ma	ss of the sample of sull places.	s =[2]

4

Cal	cium	carbonate, CaCO ₃ , occurs naturally in the Earth's crust as limestone and chalk.
(a)		cium carbonate decomposes when heated strongly to form calcium oxide and carbon kide.
	Ca	$CO_3(s) \rightarrow CaO(s) + CO_2(g)$
	(i)	Calculate the number of moles of CO ₂ produced when 2000 g of CaCO ₃ decomposes.
		(a) Caldion

Give your answer to an appropriate number of significant figures. Molar mass of $CaCO_3 = 100.1 \, g \, mol^{-1}$

Number of moles of $CO_2 = \dots$ [2]

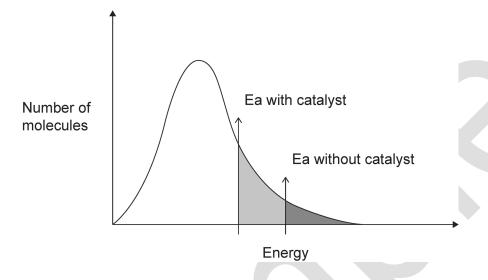
(ii) Calculate the volume of CO_2 formed at room temperature and pressure (RTP). Molar gas volume = $24.0 \, \text{dm}^3 \, \text{mol}^{-1}$ at RTP

(b) Calcium carbonate reacts with nitric acid.

Explain the type of reaction between calcium carbonate and nitric acid.

______[1

Pro	perti	es of substances are determined by the type of structure and bonding present.	
(a)	(i)	What is a covalent bond?	
			[1]
	(ii)	Na ₂ CO ₃ contains the carbonate ion, CO ₃ ²⁻ .	
		Draw a dot and cross diagram for the carbonate ion.	
			[2]
(b)	A sı	ubstance X has the following properties:	
	•	a high melting point does not conduct electricity when solid does not conduct electricity when molten	
	•	does not dissolve in water	
	Whi	ich type of structure is substance X ?	
	Tick	x (✓) one box.	
	giar	nt ionic	
	giar	nt covalent	
	giar	nt metallic	
	eim	ple molecular	
	31111	pie moleculai	[1]
(c)	Aluı	minium nitrate is an ionic compound.	
	Wh	at is the correct formula of aluminium nitrate?	
	Tick	x (✓) one box.	
	ΑlΝ	IO_3	
	A <i>l</i> ₃ l	NO ₃	
	(Ala	2NO ₃) ₃	
	Al(I	NO ₃) ₃	
			[1]


6

7 Catalysts are important in the chemical industry because they speed up chemical reactions and remain unchanged at the end of the reaction.

(a) Explain what is meant by the activation energy (E_a) of a chemical reaction.

 	 	[1]

(b) Use the Boltzmann distribution curve to explain the effect of a catalyst on a reaction.

8 Butane and ethanol are both useful fuels.

(a) Write the balanced equation for the complete combustion of ethanol.		
		[2]
(b)	Explain one advantage of using ethanol as a fuel rather than butane.	

......[1

(c) Butanal is a derivative of butane.

Draw the displayed formula of butanal.

[1]

Section C (Physics) – 20 marks

Son	ne cra	cranes use electricity to raise, lower and move loads.	
(a)	Wha	/hat is potential difference?	
			[1]
(b)		n electric crane lifts a 100 kg mass through a vertical height of 15 m ir .5 minutes.	ı a time of
	(i)	Calculate the work done to lift the mass.	
		Work done =	J [2]
	(ii)	i) The crane is 37% efficient. The work done to lift the mass is appro	ximately 15 000 J.
		Calculate the input power to the crane.	
		Input power =	W [3]
(c)	The	he potential difference across the crane's motor is 600 V.	
	Calc	alculate the current drawn by the crane.	
		Current =	A [2]

9

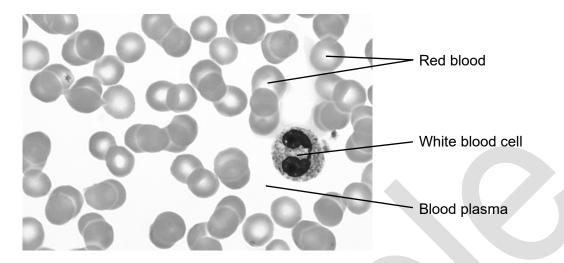
10		atient has visited their doctor to discuss bone pain that they are experiencing. They are rred for an X-ray to look for any problems in the bones.
	(a)	Explain how X-ray photons are produced in an X-ray tube.
		You may draw a labelled diagram.
		[3]
	(b)	The nuclear medicine department of a hospital uses radionuclides to treat bone cancer.
		List three types of nuclear radiation in order of decreasing mass that can be emitted from radionuclides.
		Heaviest 1
		2
		Lightest 3[1]
	(c)	Explain how nuclear radiation can damage DNA indirectly.
		[4]

(d) Radionuclides are used in radiotherapy to treat bone cancers.

The radionuclide is:

- injected into the patient
- absorbed by the bones
- kills bone cells by ionising them.

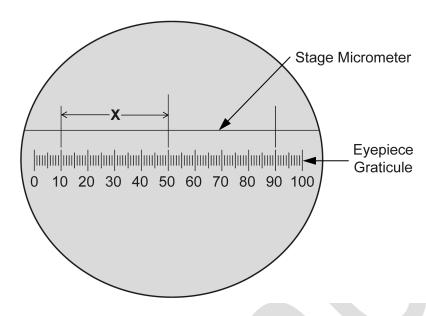
The table shows the properties of four radionuclides that are available:


Radionuclide	Emission	Half-life
Α	gamma	2.6 years
В	gamma	6 hours
С	beta	12.3 years
D	beta	50 days

Explain why Radionuclide D is c	hosen for this radiotherap	vy.	
			[4]

Section D (Practicals) – 10 marks

11 A laboratory technician prepares a temporary, stained microscope slide of a blood smear.


The photomicrograph shows a white blood cell in the blood smear.

(a)	(i)	Identify two differences between the white and red blood cells shown in the photomicrograph.
		[2]
	(ii)	The actual vertical length of the white blood cell in the photomicrograph is $22\mu m$.
		Calculate the magnification of the image.

- (b) The technician uses an eyepiece graticule to measure the dimensions of blood cells.
 - The eyepiece graticule is calibrated using a stage micrometer.
 - The stage micrometer is viewed alongside the eyepiece graticule scale line.
 - The eyepiece graticule scale line contains 100 divisions.

The drawing shows the two scale lines alongside each other.

(i) The distance **X** on the stage micrometer is **0.1 mm**.

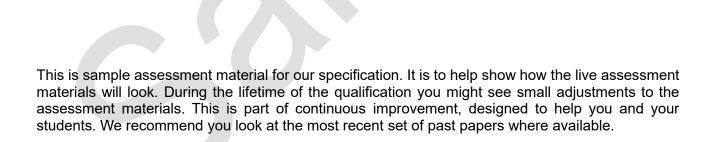
Calculate the length of an eyepiece graticule division, using the drawing.

Length = μm [3]

(ii) The technician uses the calibrated eyepiece graticule to estimate the width of five different white blood cells found in the stained blood smear.

The table shows the measurements recorded.

Replicate	Width of white blood cell (μm)
1	17.0
2	19.0
3	22.0
4	20.5
5	16.5


The width of the white blood cell shown in the photomicrograph is 18.0 μm.

Explain the extent of the variation of measurements shown in the table.

[1]

(iii) Explain **one** improvement to be made by the technician to obtain a more accurate estimate for the width of white blood cells.

END OF QUESTION PAPER

Copyright information:

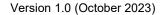
Q11 xia yuan, Blood Cells with Neutrophil`, www.gettyimages.co.uk

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, OCR (Oxford, Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge.



Level 3 Cambridge Advanced National (AAQ) in Applied Science (Certificate)

Level 3 Cambridge Advanced National (AAQ) in Applied Science (Extended Certificate)

Unit F180: Fundamentals of science SAMPLE ASSESSMENT MATERIAL MARK SCHEME

This document has 13 pages.

MARKING INSTRUCTIONS

Crossed-out answers

If a student has crossed out an answer and written a clear alternative, do **not** mark the crossed-out answer.

If a student has crossed out an answer and **not** written a clear alternative, give the student the benefit of the doubt and mark the crossed-out answer if it's readable.

Multiple choice question answers

When a multiple choice question has only one correct answer and a student has written two or more answers (even if one of these answers is correct), you should **not** award a mark.

When a student writes more than one answer.

1. Questions that ask for a set number (including 1) of short answers or points

If a question asks for a set number of short answers or points (e.g. **two** reasons for something), mark only the **first set number** of answers/points.

First mark the answers/points against any printed numbers on the answer lines, marking the **first** answer/point written against each printed number. **Then**, if students have not followed the printed numbers, mark the answers/points from left to right on each line and **then** line by line until the set number of answers/points have been marked. Do **not** mark the remaining answers/points.

2. Questions that ask for a single developed answer

If a student has written two or more answers to a question that only requires a single (developed) answer, and has **not** crossed out unintended answers, mark only the first answer.

3. Contradictory answers in points-based questions

When a student has written contradictory answers, do **not** award any marks, even if one of the answers is correct.

Levels of Response marking

- 1. To determine the level start at the highest level and work down until you reach the level that best describes the answer
- 2. To determine the mark within the level, consider the following:

Quality of the answer	Award mark	
Consistently meets the criteria for this level	At the top of the level (6 and 9 mark questions)	
Meets the criteria but with some inconsistency	At the middle of the level (9 mark questions)	
On the borderline of this level and the one below	At the bottom of the level (6 and 9 mark questions)	

MARK SCHEME

Section A (Biology) - 20 marks

1 (a) (i)				
Max mark	3			
Answer	(Capsule Cell surface membrane Cell wall Cytoplasm DNA loop Plasmids	✓ ✓ ✓	(1) (1) (1)
Guidance	If a candidate ticks mo tick.	re than three boxes, delet	te one	mark for each additional

1 (a) (ii)				
Max mark	3			
Answer		Component of chloroplast	Structure in cyanobacteria cell	
		Outer membrane	Cell (surface) membrane	(1)
		Stroma	Cytoplasm	(1)
		Thylakoids	Photosynthetic membranes	(1)
			•	
Guidance				

1 (b)	
Max mark	2
Answer	Any one from (advantage): SEM shows details of (cyanobacteria) cell surface (1) Does not require ultra-thin specimens (1) Less preparation time (1) Any one from (disadvantage): SEM has a less powerful resolution/magnification (1) SEM cannot show internal details of (cyanobacteria) cell contents (1)
Guidance	Allow alternative correct answers. Allow vice versa responses for TEM if clearly qualified.

2 (a)	
Max mark	2
Answer	Any two from: Cristae (1) Matrix (1) (ATP synthase) particles on cristae surface (1)
Guidance	Allow alternative wording for 'particles'.

2 (b) (i)	
Max mark	1
Answer	(41 + 32 + 42 + 49 + 27 + 46 + 35 + 44 + 48 + 37)/10 = 40 (to nearest whole number) (1)
Guidance	Do not allow 40.1.

2 (b) (ii)	
Max mark	1
Answer	(% difference of mitochondria in sperm cells = $40/60 \times 100$) = $\underline{66.67}$ (1)
Guidance	Allow ECF using answer to 2(b)(i) (÷ 60 x 100).

2 (b) (iii)	
Max mark	2
Answer	Impact on sperm cell activity Any one from: Slower/no swimming OR tail/flagellum moves more slowly (1) Acrosome cannot discharge contents at fertilisation (1) Reduced chance of fertilising the egg/ovum (1) Explanation Any one from: Less energy released / ATP provided (1) Reduction in energy coupling processes (1) Overall metabolic rate of sperm cell is lowered (1)
Guidance	Allow alternative correct answers.

3 (a) (i)	
Max mark	2
Answer	Condensation reaction / H ₂ O released (1) (Adjacent) amino and carboxyl groups involved (1)
Guidance	Allow a correct, labelled/annotated diagram. Ignore 'dipeptide bond' for the 2 nd marking point.

3 (a) (ii)	
Max mark	1
Answer	Folding of a single polypeptide chain to form an α helix or β pleated sheet. More than one polypeptide chain folded to form a three-dimensional shape. The sequence of amino acids within a polypeptide chain. Three-dimensional folding of a single polypeptide chain due to side chain interactions.
Guidance	If a candidate ticks more than one box, award zero for the item.

3 (b) (i)		
Max mark	2	
Answer	Benefit Any one from: • removes/reduces bias (1) • (relatively) quick to complete (1) • allows sampling of a subset of the (plant) population (1) Limitation Any one from: • not representative (of % cover of diseased pea plants) (1) • less effective if distribution pattern is uneven/patchy (1) • difficult to estimate the number of sample areas/quadrats needed (1) • based on the assumption that the samples are (truly) random (1) • may require a grid and use of randomised number generator (1)	
Guidance	Allow alternative wording. Allow correct alternative answers.	

3 (b) (ii)	
Max mark	1
Answer	Any one from: • light intensity (1) • wind speed/direction (1) • % humidity of air (1) • air temperature (1)
Guidance	Allow alternative correct answers. Do not allow biotic/living factors.

Section B (Chemistry) - 20 marks

4 (a) (i)	
Max mark	1
Answer	Both have 16 protons but S-34 has two more neutrons than S-32 (1)
Guidance	Use of sulfur-32 and sulfur-34 data is required for mark.

4 (a) (ii)	
Max mark	2
Answer	Ar = $(32 \times 95.02) + (33 \times 0.77) + (34 \times 4.21)$ (1) 100 = 32.09 (to 2 decimal places) (1)
Guidance	If answer = 32.09 award 2 marks

4 (b)	
Max mark	1
Answer	$(1s^2)2s^22p^63s^23p^4$ (1)
Guidance	

5 (a) (i)	
Max mark	2
Answer	Moles of $CaCO_3 = 2000/100.1 = 19.98$ (1) Moles of $CO_2 = 19.98$ (to 4 significant figures) (1)
Guidance	If answer = 19.98 award 2 marks Do not allow values quoted that are greater than 4 significant figures

5 (a) (ii)	
Max mark	1
Answer	Volume of $CO_2 = 19.98 \times 24 = 479.52 \text{ (dm}^3\text{)}$ (1)
Guidance	Allow 480 (dm³) for 1 mark Allow ECF from 2(a)(i)

5 (b)	
Max mark	1
Answer	Neutralisation because an acid is reacting with a base to form a salt (1)
Guidance	Allow Neutralisation because the H ⁺ ions and OH ⁻ ions are reacting to form water.

6 (a) (i)	
Max mark	1
Answer	A covalent bond is the strong electrostatic attraction between a shared pair of electrons and the nuclei of the bonded atoms (1)
Guidance	Do not allow electrons are shared.

6 (a) (ii)	
Max mark	2
Answer	First mark for bonding around central C atom (1) Second mark for non-bonded electrons around 3 O atoms (1)
Guidance	Global rules • C and O electrons must be shown differently, e.g. for • C and × for O

6 (b)	
Max mark	1
Answer	Giant covalent (1)
Guidance	

6 (c)	
Max mark	1
Answer	Al(NO ₃) ₃ (1)
Guidance	

7 (a)	
Max mark	1
Answer	Activation energy is the <u>minimum</u> amount of energy required for a reaction to occur. (1)
Guidance	

7 (b)	
Max mark	2
Answer	The graph shows a greater area under the curve when a catalyst is used (1) This means that more molecules have energy greater than the activation energy (1)
Guidance	Do not allow line with catalyst is higher than line without catalyst

8 (a)	
Max mark	2
Answer	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ (2)
Guidance	Mark 1: correct left hand side Mark 2: correct right hand side

8 (b)	
Max mark	1
Answer	Any one from: Ethanol is a renewable source so won't run out like butane (1) Ethanol burns more cleanly so produces less CO ₂ compared to butane (1) Ethanol will produce less CO and particulates than butane (1)
Guidance	Allow alternative correct answers.

8 (c)	
Max mark	1
Answer	H-O-H H-O-H H-O-H H-O-H
Guidance	Do not allow structural formulae: CH ₃ CH ₂ CH ₂ CHO

Section C (Physics) - 20 marks

9 (a)	
Max mark	1
Answer	Work done per unit charge (1)
Guidance	Allow alternative correct answers

9 (b) (i)	
Max mark	2
Answer	ΔGPE = 100 x 9.81 x 15 (1) 14715 (J) (1)
Guidance	If answer = 14715 (J) award 2 marks Answer must be to 3 or more sig. figs. Do not allow 15 000 (J)

9 (b) (ii)	
Max mark	3
Answer	Work done on crane (total energy transferred) 14715 ÷ 0.37 = 39770 (J) (1) 39770 ÷ 90 (1) = 441.891 (recurring) (W) (1)
Guidance	If answer = 441.891 (W) award 3 marks

9 (c)	
Max mark	2
Answer	I = 441.891 ÷ 600 (1) = 0.736 (A) (1)
Guidance	If answer = 0.736 (W) or 0.736486 (W) award 2 marks

10 (a)	
Max mark	3
Answer	High voltage (supply) connected between cathode and anode (1) (Accelerated) electrons hit the target / metal / anode (1) KE is transformed into X-ray (photons) (1)
Guidance	

10 (b)	
Max mark	1
Answer	(Heaviest) Alpha Beta (Lightest) Gamma (1)
Guidance	

10 (c)	
Max mark	4
Answer	Gamma radiation is able to create free radicals from water (1) because the radiation is high frequency and therefore high energy (1) The free radicals from the water ionise the DNA (1) because they have an unpaired electron which means they are highly reactive (1)
Guidance	Allow gamma rays

10 (d)	
Max mark	4
Answer	 Any four from: D is a beta emitter so is more ionising than radionuclides A and B (1) D is a beta emitter so will be energetic enough to kill/ionise/destroy the tumour cells (1) D has a shorter half-life than C so will be active in the patient for less time / will expose the patient to less ionising radiation (1) Gamma rays could damage healthy tissue due to its penetrating power (1) Half-life of radionuclide A and C is too long, as they would expose the patient to excessive ionising radiation (1)
Guidance	

Section D (Practicals) - 10 marks

11 (a) (i)	
Max mark	2
Answer	 Any two from: WBCs are larger than RBCs (1) RBCs have a great density than WBCs (1) WBC/monocyte/leukocyte has a large/prominent nucleus OR RBCs lack a nucleus (1) nucleus in the WBC contains a nucleolus (1) WBCs appear to have a thinner/lighter centre OR are folded/crenated/disc-like (1) nucleus in the white blood cell is heavily stained (1) RBCs are not heavily stained (1)
Guidance	Allow alternative wording. Allow alternative correct answers.

11 (a) (ii)	
Max mark	3
	observed size = 15 mm (1) Allow +/- 2 mm (1)
Answer	magnification = $(15 \times 10^3) \div 22 (1)$
	= 681.8 x (1)
Guidance	If answer = 681.8 / 682x give 3 marks . Allow range 590.9 to 772.7x If not, give 1 mark (max.) for correct use of the equation.

11 (b) (i)	
Max mark	3
Answer	length of \mathbf{X} = 0.1mm = 100 μ m (1) 40 eyepiece graticule divisions = 100 μ m (1) 1 eyepiece graticule division = 100 ÷ 40 = 2.5 μ m (1)
Guidance	If answer = 2.5 μm give 2 marks . If not, give 1 mark (max.) for any one of the calculation steps

11 (b) (ii)	
Max mark	1
	Any one from: Not perfectly circular, so random/measurement error in measuring width of white blood cells (1) White blood cells may be at different stages of development/growth (1)
Guidance	Allow alternative wording. Allow correct alternative answers.

11 (b) (iii)	
Max mark	1
Answer	Any one from: Use a higher resolution graticule to get more precise data (1) Find mean width of each blood cell by recording multiple measurements (1) Use a larger number of replicates to remove outliers (1)
Guidance	Allow alternative wording. Allow correct alternative answers.

These are draft documents and some aspects may not be fully accessible. If you have any problems with the accessibility of this format, please contact us.

Contact the team at:

☑ science@ocr.org.uk

ocr.org.uk

♠ facebook.com/ocrexams

y @OCR science

instagram.com/ocrexaminations

in linkedin.com/company/ocr

youtube.com/ocrexams

To stay up to date with all the relevant news about our qualifications, register for email updates at **ocr.org.uk/updates**

Visit our Online Support Centre at support.ocr.org.uk

OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. ©OCR 2023 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA. Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

Cambridge University Press & Assessment is committed to making our documents accessible in accordance with the WCAG 2.1 Standard. We're always looking to improve the accessibility of our documents. If you find any problems or you think we're not meeting accessibility requirements, please contact us.

OCR acknowledges the use of the icons by appleuzr, sourced from gettyimages.co.uk.