

GCE

Chemistry A

H032/01: Breadth in chemistry

AS Level

Mark Scheme for June 2023

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2023

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

RM ASSESSOR

- 1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: *RM Assessor Online Training*; *OCR Essential Guide to Marking*.
- 2. Make sure that you have read and understood the mark scheme and the question paper for this unit.
- 3. Log-in to RM Assessor and mark the **required number** of practice responses ("scripts") and the **required number** of standardisation responses.

MARKING

- 1. Mark strictly to the mark scheme.
- 2. Marks awarded must relate directly to the marking criteria.
- 3. The schedule of dates is very important. It is essential that you meet the RM Assessor 50% and 100% (traditional 50% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
- 4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the RM Assessor messaging system.
- 5. Work crossed out:

Crossed Out Responses

Where a candidate has crossed out a response and provided a clear alternative then the crossed out response is not marked. Where no alternative response has been provided, examiners may give candidates the benefit of the doubt and mark the crossed out response where legible.

Rubric Error Responses – Optional Questions

Where candidates have a choice of question across a whole paper or a whole section and have provided more answers than required, then all responses are marked and the highest mark allowable within the rubric is given. Enter a mark for each question answered into RM assessor, which will select the highest mark from those awarded. (*The underlying assumption is that the candidate has penalised themselves by attempting more questions than necessary in the time allowed.*)

Multiple Choice Question Responses

When a multiple choice question has only a single, correct response and a candidate provides two responses (even if one of these responses is correct), then no mark should be awarded (as it is not possible to determine which was the first response selected by the candidate). When a question requires candidates to select more than one option/multiple options, then local marking arrangements need to ensure consistency of approach.

Contradictory Responses

When a candidate provides contradictory responses, then no mark should be awarded, even if one of the answers is correct.

Short Answer Questions (requiring only a list by way of a response, usually worth only one mark per response)

Where candidates are required to provide a set number of short answer responses then only the set number of responses should be marked. The response space should be marked from left to right on each line and then line by line until the required number of responses have been considered. The remaining responses should not then be marked. Examiners will have to apply judgement as to whether a 'second response' on a line is a development of the 'first response', rather than a separate, discrete response. *(The underlying assumption is that the candidate is attempting to hedge their bets and therefore getting undue benefit rather than engaging with the question and giving the most relevant/correct responses.)*

Short Answer Questions (requiring a more developed response, worth two or more marks)

If the candidates are required to provide a description of, say, three items or factors and four items or factors are provided, then mark on a similar basis – that is downwards (as it is unlikely in this situation that a candidate will provide more than one response in each section of the response space.)

Longer Answer Questions (requiring a developed response)

Where candidates have provided two (or more) responses to a medium or high tariff question which only required a single (developed) response and not crossed out the first response, then only the first response should be marked. Examiners will need to apply professional judgement as to whether the second (or a subsequent) response is a 'new start' or simply a poorly expressed continuation of the first response.

Mark Scheme

- 6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
- 7. There is a NR (No Response) option. Award NR (No Response)
 - if there is nothing written at all in the answer space
 - OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
 - OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks – for an attempt that earns no credit (including copying out the question).

8. The RM Assessor **comments box** is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. **Do not use the comments box for any other reason.**

If you have any questions or comments for your Team Leader, use the phone, the RM Assessor messaging system, or email.

9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.

10. For answers marked by levels of response:

Read through the whole answer from start to finish, using the Level descriptors to help you decide whether it is a strong or weak answer. The indicative scientific content in the Guidance column indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance. Using a 'best-fit' approach based on the skills and science content evidenced within the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer.

Once the level is located, award the higher or lower mark:

The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.

The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary:

The skills and science content determines the level.

The communication statement determines the mark within a level.

No Level of response questions on this paper

The only annotation on a level of response question should be the indication of the level.

A level annotation should be used where all marks for a level have been achieved. e.g. if a candidate has 6 marks, they would have this annotation on their script:

L3

If a candidate has achieved 5 marks then they have reached Level 3 but will not have met the communication statement. They should have the following annotations on their scripts:

L3 🔨

The same principle should be applied to Level 2 and Level 1.

No marks (0) should have a cross: 🗡

Place the annotations alongside the mark for the question.

On additional pages, annotate using SEEN

11. Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
LI	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore
BP	Blank page

12. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

13. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	AO element	Guidance
1	В	1	AO1.1	
2	В	1	AO1.2	
3	C	1	AO1.2	
4	C	1	AO1.1	ALLOW 6
5	В	1	AO1.2	
6	C	1	AO2.1	
7	C	1	AO2.6	
8	D	1	AO2.6	
9	C	1	AO2.2	
10	D	1	AO2.4	
11	D	1	AO1.1	
12	D	1	AO1.1	
13	Α	1	AO1.1	
14	В	1	AO2.8	
15	D	1	AO1.2	
16	C	1	AO2.5	ALLOW 4
17	Α	1	AO2.5	
18	D	1	AO2.7	
19	C	1	AO2.5	
20	В	1	AO2.6	
	Total	20		

SECTION B

Q	Question			Answe	r	Mark	s AO element	Guidance
21	(a)	(i)	Shared pair of e	electrons ✓		1	AO1.1	IGNORE comments about attraction between nuclei and shared pair OR magnetic attraction
		(ii)	F N NF3: 3 'dot-and AND 3 lor BF3: 3 'dot-and AND 3 lor	 IF₃: 3 'dot-and-cross' bonds AND 1 lone pair around N AND 3 lone pairs around each of the 3 F atoms ✓ 3 'dot-and-cross' bonds ONLY around B AND 3 lone pairs around each of the 3 F atoms ✓ 				Use annotations with ticks, crosses ECF etc. for this part Must be 'dot-and-cross' using 2 different symbol for electron source ONLY IGNORE absence of circles ALLOW 1 mark for correct dot and cross diagrams for NF ₃ AND BF ₃ BUT with F lone pairs omitted ALLOW absent symbols from circles A lone pair can be shown as 2 single electrons IGNORE charges
	(b) (i)		Bond angles a	nd shapes		2	AO1.2 ×2	
				Bond angle	Name of shape			For NF ₃
			NF ₃	107º	pyramidal			ALLOW pyramid
			BF ₃	120º	trigonal planar			ALLOW trigonal pyramid(al)
			ALL 4 po 2 OR 3 po	ints $\rightarrow 2 \text{ mark}$ bints $\rightarrow 1 \text{ mark}$	<s √="" √<br="">< √</s>			For BF₃ ALLOW planar triangle BUT 'planar' is insufficient

H032/01	
---------	--

Q	Question		Answer	Marks	AO element	Guidance		
	(ii)	 NF₃ has 3 bonded pairs AND 1 lone pair (of electrons) AND lone pairs repel more (than bonded pairs) ✓ 	2	AO1.2 ×2	ALLOW Ip for lone pair (of electrons) bp for bonding pair (of electrons) regions for electron pairs		
		•	BF₃ has three bonded pairs (of electrons) ✓			ALLOW 'bonds' for 'bonded pair' IGNORE 'electrons repel' DO NOT ALLOW 'atoms repel'		

Q	Question		Answer		Marks	AO element	Guidance		
22	(a)		(Strong acid) co	ompletely/full	y dissociates	ionises 🗸	1	AO1.1	DO NOT ALLOW easily dissociates
									ALLOW ALL H ⁺ ions are released
	(b)	(i)	CuO + 2HCI →	CuCl ₂ + H ₂ C) ✓		1	AO2.6	ALLOW multiples IGNORE state symbols IGNORE charges, even if wrong
		(ii)	(NH ₄) ₂ CO ₃ + 2H Any 4 formulae All 5 formulae c	I₄NO₃ + CO₂ alanced ✓	+ H ₂ O	2	AO2.6 ×2	ALLOW multiples IGNORE state symbols IGNORE charges, even if wrong ALLOW H ₂ CO ₃ for CO ₂ + H ₂ O <i>Counts as 2 formulae for marking criteria</i>	
	(c)	(i)	Volumetric flas	< ✓			1	AO1.2	ALLOW graduated flask
		(ii)	Final reading/cm ³	20.25	40.85	25.85	1	AO1.2	
			Initial reading/cm ³	0.00	20.25	5.50			
			Titre/cm ³	20.25	20.60	20.35			DO NOT ALLOW 1 DP, e.g. 20.6 instead of 20.60
			All 3 titres correct to 2 DP ✓						
		(iii)	mean titre = $\frac{20.25 + 20.35}{2}$ = 20.30 (cm ³) \checkmark <i>i.e. using concordant (consistent) titres</i>				1	AO2.8	ALLOW 20.3 Missing '0' already penalised in c(ii) DO NOT ALLOW mean of all three titres, i.e. $\frac{20.25 + 20.60 + 20.35}{3} = 20.40$

Mark Scheme

Qu	estion	Answer	Marks	AO element	Guidance
	(iv)		4		ALLOW ECF throughout and from incorrect concordant titres from 22c(iii)
		$n(H_2SO_4) = 0.165 \times \frac{20.30}{1000} = 3.35 \times 10^{-3} \text{ (mol) } \checkmark$		AO3.1 ×3	Calculator value = 3.3495×10^{-3}
		<i>n</i> (MOH) in 25.0 cm ³ = $2 \times 3.35 \times 10^{-3}$ = 6.70×10^{-3} (mol) \checkmark			Calculator value = 6.699×10^{-3}
		<i>n</i> (MOH) in 250.0 cm ³ = 10 × 6.70 × 10 ⁻³ = 6.70 × 10 ⁻² (mol) ✓			Calculator value = 6.699×10^{-2}
		$A_{\rm r}$ of M = $\frac{2.62}{6.70 \times 10^{-2}}$ = 39.1 AND M = potassium/K \checkmark		AO3.2 ×1	By ECF, ALLOW Group 1 metal nearest to calculated value of <i>A</i> _r
		COMMON ERRORS		-	
		Use of 20.4 from mean of all 3 titres ALL 4 MARKS		Use of 25.0	(wrong volume) for <i>n</i> (H ₂ SO ₄)
		$n(H_2SO_4) = 0.165 \times \frac{20.4}{1000} = 3.366 \times 10^{-3} \text{ (mol) } \checkmark \text{ from } 0$	c)(iii)	$n(H_2SO_4) =$	$0.165 \times \frac{25}{1000} = 4.125 \times 10^{-3} \text{ (mol) } \star$
		<i>n</i> (MOH) in 25.0 cm ³ = $2 \times 3.366 \times 10^{-3}$ = 6.732×10^{-3} (mol) \checkmark		<i>n</i> (M OH) in 2	25.0 cm ³ = 2 × 4.125 × 10 ⁻³ = 8.25 × 10 ⁻³ (mol) ✓
		<i>n</i> (MOH) in 250.0 cm ³ = $10 \times 6.732 \times 10^{-3}$ = 6.732×10^{-2} (mol) \checkmark		<i>n</i> (M OH) in 2	$250.0 \text{ cm}^3 = 10 \times 8.25 \times 10^{-3} \\ = 8.25 \times 10^{-2} \text{ (mol) } \checkmark$
		$A_{\rm r}$ of M = $\frac{2.62}{6.732 \times 10^{-2}}$ = 38.9 OR 39 AND M = K ✓		$A_{\rm r}$ of $\mathbf{M} = \frac{1}{8.2}$	$\frac{2.62}{25 \times 10^{-2}} = 31.75 \text{ AND } M = K \checkmark$
		IF ×10 is absent, A_r = 389 AND M = Cs OR Fr		IF ×10 is ab	sent, <i>A</i> _r = 317.5 AND M = Cs OR Fr

	Question		Answer		AO element	Guidance	
2:	3 (a)	(i)	C_7H_{16} + 11 O_2 → 7 CO_2 + 8 H_2O Correct species \checkmark Balanced \checkmark	2	AO2.6 ×2	ALLOW multiples IGNORE state symbols For heptane formula, ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW 1 mark for balanced combustion equation for a different alkane (ECF) e.g. $C_6H_{14} + 9\frac{1}{2}O_2 \rightarrow 6CO_2 + 7H_2O$	

Question	Answer	Marks	AO element	Guidance
Question (ii)	Answer enthalpy 2CO(g) + 2NO(g) E_a	2	element	Guidance ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE state symbols ΔH DO NOT ALLOW $-\Delta H$ DO NOT ALLOW double headed arrow on ΔH ALLOW ΔH arrow even with small gap at the top and bottom, i.e. line does not quite reach reactant or product line.
	AND Arrow downwards \checkmark E_a (independent of ΔH) curve with arrow from reactants to top of curve AND E_a labelled \checkmark IF endothermic diagram shown, ALLOW ECF for E_a using MS criteria		AO2.1 AO1.2	ALLOW –746 for ΔH E_a ALLOW AE OR A _E ALLOW 2 arrowheads at each end of E_a line OR no arrowhead BUT DO NOT ALLOW arrowhead down E_a line must reach maximum (or near to maximum) on curve

Questio	on	Answer	Marks	AO element	Guidance	
	(iii)	Catalyst lowers activation energy OR Catalyst increases rate without itself changing ✓	2	AO1.2 ×2	ALLOW 2nd labelled curve on profile diagram in 23(a)(ii) with lower activation energy/ E_c with catalyst ALLOW E_c needs less energy to start reaction ALLOW E_c curve is lower than E_a curve	
		Reaction proceeds via a different route/pathway OR More molecules/particles exceed activation energy ✓			IGNORE 'shorter route' for alternative route IGNORE more successful collisions	
(b)	(i)	298 K/25°C AND 100 kPa ✓	1	AO1.1	 ALLOW 'a stated temperature' To accept that other standard temperatures can be used and 298 should strictly be added as ΔH₂₉₈. IF a temperature is seen, it must be 298/25°C ALLOW 1 × 10⁵ Pa, 101 kPa, 1.01 × 10⁵ Pa, 1 atm, 1 bar 	

Q	Question		Answer		AO element	Guidance
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE	3	AO2.6	FULL ANNOTATIONS MUST BE USED
			If answer = −394 (kJ mol ⁻¹) award 3 marks		×3	
						ALLOW ECF throughout
			Use of $\Delta_{f}H$ values and balancing numbers			
			± (-824) seen anywhere			COMMON ERRORS
			AND			-1182 omission of $\div 3$ for $\Delta_f H(CO_2)$ 2 marks
			\pm (3 × –111) OR \pm (333) OR \pm 1157 seen anywhere \checkmark			(+)394 Incorrect subtraction 2 marks
						(+)1182 Incorrect subtraction & no ÷3 1 mark
			Correct subtraction for 3∆ _f <i>H</i> (CO) using ∆ <i>H</i>			
			$(-25) + (-1157) - 1157 = 824 + (3 \times -111)$			–320 no ×3 for –111 2 marks
			= −1182 (kJ mol ⁻¹) ✓			–960 no ×3 for –111 AND no ÷3 1 mark
			Calculation of ∆₁ <i>H</i> (CO₂) formation			-377.3 / -377 incorrect subtraction 2 mark
			$\Delta_{\rm f} H({\rm CO}_2) = \frac{-1182}{3} = -394 \; (\rm kJ \; mol^{-1}) \; \checkmark$			-1132 incorrect subtraction AND no ÷3 1 mark
						-303.3 / -303 no ×3 for -111 AND incorrect subtraction 1 mark
						-385.66 / -385.7 no ∆ <i>H</i> (25) and ÷3 2 marks (+)385.66 / (+)385.7 no ∆ <i>H</i> (25) and ÷3 and wrong sign 1 mark

24	(a)	All reaction species have same state/phase OR Reactants AND products has same state ✓	1	AO1.1	 ALLOW SO₂ AND O₂ AND SO₃ for all species OR reactants and products are gases OR the molecules are all gases IGNORE reactants and catalyst have same state
	(b)	Throughout, ALLOW suitable alternatives for right-hand side, e.g. towards SO ₃ /products OR forward direction	5		FULL ANNOTATIONS MUST BE USED
		Pressure 2 marks Increased pressure shifts equilibrium to right OR favours the right OR increases yield (of SO ₃) ✓		AO1.1	ORA for reverse reaction e.g. decreased pressure shifts equilibrium to left
		Right-hand side has fewer (gaseous) moles OR 3 (gaseous) moles \rightarrow 2 (gaseous) moles \checkmark		AO1.2	For moles, ALLOW molecules/particles
		Temperature 2 marks Increased temperature shifts equilibrium to left OR favours the left OR decreases yield (of SO ₃) ✓		AO1.1	ORA for reverse reaction e.g. decreased temperature shifts equilibrium to right
		(Forward) reaction is exothermic/ ΔH is negative OR (Forward) reaction gives out heat \checkmark		AO1.2	ALLOW reverse reaction is endothermic $/\Delta H$ is positive/takes in heat
		Catalyst 1 mark No shift in equilibrium OR no effect on yield (of SO₃) ✓		AO1.2	ALLOW rates of forward and reverse reaction increase by same amount IGNORE 'no increase in yield' <i>Yield could still decrease</i>

H032/01		l	Mark Scheme			June 2023	
	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 7.9 × 10 ⁴ award 2 marks K_c expression $(K_c =) \frac{[SO_3]^2}{[SO_2]^2 [O_2]}$ OR $\frac{(5.0 \times 10^{-2})^2}{(3.0 \times 10^{-3})^2 \times (3.5 \times 10^{-3})}$ OR 79365	2	AO2.6 ×2	IF there is an alternative answer, check for any ECF credit possible using working below.Square brackets required for K_c expressionALLOW ECF to 2 SF and standard form ONLY from inverted K_c expression $\rightarrow 1.3 \times 10^{-5}$ DO NOT ALLOW $\frac{[SO_3]^2}{[SO_2]^2 + [O_2]} = 0.71$ (no marks)IGNOPE attempts at units	
		(ii)	Equilibrium shifts to the right/towards products/SO $_3 \checkmark$	1	AO3.1	ALLOW equilibrium favours the right	

Qı	Question		Answer	Marks	AO element	Guidance
25	(a)		Each marking point is independent	2	AO1.1 ×2	Comparisons needed throughout ORA throughout
			Chain length: interaction between molecules Chain length (in pentane) is longer AND more (surface) contact OR greater surface area/SA√			 Assume the following for longer chain larger/bigger molecule more C (and H) more atoms more electrons BUT 'branching' is a CON IGNORE comments about packing
			London forces: strength and energy Stronger / more London forces OR more energy to break London forces ✓			ALLOW induced dipole(–dipole) interactions for London forces IGNORE van der Waals'/vdw forces
	(b)		Skeletal formulae required + Br + Br + HBr $+ Br_2 + Br_2 + Br + B$	2	AO3.1 ×2	ALLOW 1 mark (ECF) for 2 'correct' equations with dot omitted or incorrectly positioned ALLOW 1 mark for forming 1-bromobutane with dots correct for 1-bromobutane e.g. $\checkmark + \cdot $
						No credit for responses using molecular formulae for organic structures

H032/01	
---------	--

Question	Answer	Marks	AO element	Guidance
(C)	FITSWEI	4	element AO1.2 AO2.5 AO1.2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW Pt OR Pd for Ni ALLOW H ₂ O(g) for steam (g) OR temperature >100°C required For acid, ALLOW H ⁺ /H ₂ SO ₄ /H ₃ PO ₄ ALLOW small slip in acid formula e.g. phosphoric acid as H ₂ PO ₃ , etc ALLOW vertical bond to any part of OH, i.e. OH OH OH

Question	Answer	Marks	AO element	Guidance
26	Correct structural isomers of C ₃ H ₈ O 1 mark CH ₃ CH ₂ CH ₂ OH AND CH ₃ CHOHCH ₃ ✓			ANNOTATE WITH TICKS AND CROSSES Throughout, ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	Reaction conditions1 markDistillation for aldehydeAND reflux for carboxylic acid OR ketone ✓			
	Functional group of organic product2 marks $CH_3CH_2CH_2OH$ \rightarrow aldehyde \rightarrow carboxylic acid \checkmark OR \rightarrow carboxylic acid \checkmark $CH_3CHOHCH_3$ \rightarrow ketone \checkmark			IF functional group is NOT given, ALLOW propanal / RCHO ALLOW propanoic acid / RCOOH ALLOW propanone / RCOR IGNORE small slips in formulae (assessed in equation)
	$\begin{array}{c c} \textbf{One correct equation} & 1 mark \\ CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \\ \textbf{OR} \\ CH_3CHOHCH_3 + [O] \rightarrow CH_3COCH_3 + H_2O \\ \textbf{OR} \\ CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O \checkmark \end{array}$			

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit

ocr.org.uk

Twitter/ocrexams

/ocrexams

/company/ocr

/ocrexams

OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2023 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please <u>contact us</u>.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.