Oxford Cambridge and RSA

Level 3 Alternative Academic Qualification Cambridge Advanced Nationals in Engineering H027/H127

Formulae Booklet

Unit F130: Principles of engineering

This booklet contains formulae which learners studying the above unit and taking associated examination papers may need to access.

Other relevant formulae may be provided in some questions within examination papers. However, in most cases suitable formulae will need to be selected and applied by the learner. Clean copies of this booklet will be supplied alongside examination papers to be used for reference during examinations.

Formulae have been organised by topic rather than by unit as some may be suitable for use in more than one context.

Note for teachers

This booklet does not replace the taught content in the unit specification or contain an exhaustive list of required formulae. You should ensure all unit content is taught before learners take associated examinations.

1. Mathematics

Mensuration

Circle

Radius $=r$
Diameter $=d$
Area of a circle $=\pi r^{2}$ or $=\frac{\pi}{4} d^{2}$
Circumference of a circle $=2 \pi r$ or $=\pi d$

Rectangle

Area $=l h$
Perimeter $=2 l+2 h$

Triangle

Area $=\frac{1}{2} b h$ or $\frac{1}{2} b c \sin A$
Perimeter $=a+b+c$

Cylinder

Curved surface area $=2 \pi r h$
Total surface area $=2 \pi r^{2}+2 \pi r h$
Volume $=\pi r^{2} h$

Sphere

Surface area $=4 \pi r^{2}$
Volume $=\frac{4}{3} \pi r^{3}$

Cone

Curved surface area $=\pi r l$
Total surface area $=\pi r^{2}+\pi r l$
Volume $=\frac{1}{3} \pi r^{2} h$

Density

Density $=\frac{\text { mass }}{\text { volume }}$
$\rho=\frac{m}{v}$

Algebra - straight-lines

Straight-line

Trigonometry

Trigonometric Ratios

Converting between radians and degrees

$$
\begin{aligned}
& \text { radians }=\text { deg rees } \times \frac{\pi}{180} \\
& \text { degrees }=\text { radians } \times \frac{180}{\pi}
\end{aligned}
$$

Sine and Cosine rules

Sine rule: $\quad \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
$y=\mathrm{m} x+\mathrm{c}$, where:
gradient $m=\frac{\Delta y}{\Delta x}$
the intercept $=\mathrm{c}$

$$
\begin{aligned}
& \sin \theta=\frac{o p p}{h y p} \\
& \cos \theta=\frac{a d j}{h y p} \\
& \tan \theta=\frac{o p p}{a d j}
\end{aligned}
$$

Pythagoras'rule: \quad hyp ${ }^{2}=o p p^{2}+a d j^{2}$

2. Mechanical equations

Systems of forces

Moment $=$ force \times distance
Vertical component of force
Horizontal component of force
Resultant force

$$
F_{R}=\sqrt{\sum F_{v}^{2}+\sum F_{h}^{2}}
$$

Direct tensile or compressive stress
Direct tensile or compressive strain
Modulus of elasticity or Young's modulus
Shear stress
Shear strain

Modulus of rigidity

$$
M=F d
$$

$F_{v}=F \sin \theta, \theta$ from the horizontal
$F_{h}=F \cos \theta, \theta$ from the horizontal
$\sigma=\frac{F}{A}$
$\varepsilon=\frac{\Delta L}{L}$
$E=\frac{\sigma}{\varepsilon}$
$\tau=\frac{F}{A}$
$\gamma=\frac{\Delta L}{L}$
$G=\frac{\tau}{\gamma}$

Linear dynamic systems

Force $=$ mass x acceleration
$F=m a$
Weight $=$ mass x acceleration due to gravity
$W=m g$
Work done $=$ force x distance
$W=F d$
Gravitational potential energy $=$ mass x gravitational acceleration x height $E_{p}=m g h$
Kinetic energy $=\frac{1}{2}$ mass x velocity ${ }^{2}$
$E_{k}=\frac{1}{2} m v^{2}$
Average power $=\frac{\text { work done }}{\text { time }}$
$P=\frac{W}{t}$
Instantaneous power $=$ force x velocity
$P=F v$
Efficiency
$\eta=\frac{E_{\text {out }}}{E_{\text {in }}} \times 100 \%$
Static friction
$F \leq \mu N$
Momentum $=$ mass x velocity
$p=m v$

SUVAT equations:
(s - distance, u - initial velocity, v - final velocity, a - acceleration and t - time.)

- $v=u+a t$
- $v^{2}=u^{2}+2 a s$
- $s=u t+\frac{1}{2} a t^{2}$
- $s=\frac{1}{2}(u+v) t$

Conservation of momentum:

- Collisions between two bodies

$$
\begin{aligned}
& m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} \\
& m_{1} u=\left(m_{1}+m_{2}\right) v
\end{aligned}
$$

3. Electrical/electronic equations

Electrical principles

Charge $=$ current \times time
Electrical energy $=$ charge \times voltage (potential difference)
Electrical energy $=$ power \times time
Resistivity $=\frac{\text { resistance } \times \text { cross sectional area }}{\text { length of the conductor }}$
Ohm's Law for DC circuits, resistance $=\frac{\text { voltage }}{\text { current }}$
Ohm's law for purely resistive AC circuits, impedance $=\frac{\text { voltage }}{\text { current }}$
Total resistance of series resistors
Total resistance of parallel resistors
Electrical power $=$ voltage \times current
$=$ current $^{2} \times$ resistance
$=\frac{\text { Voltage }^{2}}{\text { resistance }}$
Kirchhoff's current law (KCL) - for a junction
Kirchhoff's voltage law (KVL) - for a loop
Permittivity $=$ permittivity of free space \times relative permittivity
Capacitance $=$ permittivity $\times \frac{\text { Cross sectional area }}{\text { distance between plates }}$
Capacitance $=\frac{\text { Quantity of charge }}{\text { Voltage }}$
Energy stored in a capacitor $=\frac{1}{2} \times$ capacitance \times Voltage 2
Time constant of a capacitor $=$ resistance \times capacitance
Inductance of a coil $=\frac{\text { Magnetic Flux } \times \text { Number of Turns }}{\text { current }}$
Energy stored in an inductor $=\frac{1}{2} \times$ inductance \times current 2
Force on conductor $=$ flux density \times current \times length \times sine angle
AC voltage waveform $=$ max. Voltage \times sine (angular velocity \times time)
Angular velocity of a waveform $=2 \times \pi \times$ frequency
Frequency $=\frac{1}{\text { Time Period }}$
$Q=I t$
$E=Q V$
$E=P t$
$\rho=\frac{R A}{l}$
$R=\frac{V}{I}$
$z=\frac{V}{I}$
$R_{T}=R_{1}+R_{2}+R_{3} \ldots$
$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \cdots$
$P=V I$
$P=I^{2} R$
$P=\frac{V^{2}}{R}$
$\sum I_{\text {In }}=\sum I_{\text {out }}$
$\sum V=0$
$\varepsilon=\varepsilon_{0} \times \varepsilon_{r}$
$C=\varepsilon \frac{A}{d}$
$C=\frac{Q}{V}$
$E=\frac{1}{2} C V^{2}$
$\tau=R C$
$L=\frac{\Phi \mathrm{N}}{I}$
$E=\frac{1}{2} L I^{2}$
$F=B I l \sin \theta$
$v=V_{\max } \sin (\omega \mathrm{t})$
$\omega=2 \pi f$
$f=\frac{1}{T}$
Root-Mean-Square $($ RMS $)$ Voltage $=\frac{\text { Peak Voltage }}{\sqrt{2}}$
$V_{R M S}=\frac{V_{P K}}{\sqrt{2}}$
Energy efficiency
$\eta=\frac{\text { energy output }}{\text { energy input }} \times 100 \%$

Analogue Circuits

Voltage amplifier gain/loss $=\frac{\text { Voltage }_{\text {out }}}{\text { Voltage }_{\text {in }}}$
$A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}$
Current amplifier gain/loss $=\frac{\text { Current }_{\text {out }}}{\text { Current }_{\text {in }}}$
$A_{I}=\frac{I_{\text {out }}}{I_{\text {in }}}$
Power amplifier gain/loss $=$ Voltage gain/loss \times Current gain/loss $A_{P}=A_{v} \times A_{I}$
Voltage gain/loss in Decibels
$a_{v}(d B)=20 \times \log A_{v}$
Current gain/loss in Decibels
Power gain/loss in Decibels
Gain of an op-amp: Non-inverting

Inverting
$a_{I}(d B)=20 \times \log A_{I}$
$a_{P}(d B)=10 \times \log A_{P}$
Gain $\left(A_{v}\right)=1+\frac{R_{1}}{R_{2}}$
$\operatorname{Gain}\left(A_{v}\right)=-\frac{R_{1}}{R_{2}}$

4. Mathematical, Mechanical and Electrical/Electronic constants

- Acceleration due to gravity
- Permittivity of free space
- Relative permittivity ε_{r} :
- Relative permittivity of a vacuum
- Relative permittivity of air
- Relative permittivity of a ceramic

$$
\mathrm{g}=9.81 \mathrm{~ms}^{-2}
$$

$$
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}
$$

$$
\varepsilon_{\text {vacuum }}=1
$$

$$
\mathcal{E}_{\text {air }}=1.0006
$$

$$
\mathcal{E}_{\text {Ceramic }}=2
$$

Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, OCR (Oxford Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of Cambridge University Press \& Assessment, which is itself a department of the University of Cambridge.

