

Exemplar Work for SAMs

Units A452 and A453

GCSE Computing Controlled Assessment

Unit A452 Practical Investigation

Unit Recording Sheet

 Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate.

 Unit
 A452
 Year

 Centre Name
 Centre Number

 Candidate Name
 Candidate Number

		Teacher Comment	Mark		
Practical Investigation	There may be little or no evidence of any practical investigation. The evidence supplied is minimal and poorly documented with little relevance to the set task. The practical evidence may all be the result of group or teacher led activity with little input from the student.	There is evidence of a practical investigation The evidence supplied is documented clearly and is relevant to the set task There is evidence of individual research beyond the group activity and any teacher led activity. The practical investigations show signs of planning but there may be omissions made in assessing the consequences.	There is evidence of a well structured practical investigation The evidence supplied is well organised and clearly relevant to the set task There is extensive evidence of individual practical investigation beyond the group activity and any teacher led activity The practical investigation shows clear signs of planning and a structured approach to evidence gathering to provide a complete investigation of the set topic area and beyond. Practical investigation has been carried out with skill and due regard to safety issues.	Decent attempt to investigate LMC. Some examples used and explained well. Attempts ate the subsequent taskss OK. Overall lacking in detail and explanation of the process.	8 Max 15
	[0 - 5]	[6 - 10]	[11 - 15]		15

Effective and efficient use of techniques	The techniques used may not be entirely appropriate to the problem and will only produce partially working solutions to a small part of the problem.	The techniques will be used appropriately giving working solutions to most of the parts of the problem. Some parts of the solution may be executed in a partial or inefficient manner.	The techniques are used appropriately in all cases giving an efficient, working solution for all parts of the problem.	The techniques are largely used adequately but not always effeiciently. most of the solutions work but there is a lack of explanation throughout the development. The solutions are not always efficient.	6 Max
	[0 - 3]	[4 - 7]	[8 - 10]		10
Technical understanding	The candidate demonstrates a limited understanding of the technical issues related to the scenario. Little detail is presented. There will be limited indication of any evidence provided being analysed. There is little correct use of technical terminology.	The candidate demonstrates a reasonable understanding of the technical issues related to the scenario. The amount of detail presented is adequate to support the arguments. There is some analysis carried out on the evidence collected. The use of technical terminology is largely correct but it may be limited.	The candidate demonstrates a thorough and secure understanding of the technical issues related to the scenario. A wide range of relevant and detailed information is presented. The evidence which has been collected is fully analysed. Technical terminology is used correctly. At the top end of the band, this will be extensive and confidently used.	The use of technical terms is reasonable but not always accurate and the report lacks deatil and analysis.	5 Max
	[0 - 3]	[4 - 7]	[8 - 10]		10

Conclusions and evaluation	The evidence of written communication is limited with little or no use of specialist terms. There are many errors in spelling, punctuation and grammar. Information may be ambiguous or disorganised. There is limited if any reference to evidence. The evaluation may be simplistic with little or no relevance.	There is evidence that the solutions have been tested for basic functionality. Candidates will have produced a sound evaluation which reviews some aspects of the task. Evidence of good written communication using some specialist terms. There are few errors in spelling, grammar and punctuation. Information for the most part will be presented in a structured format. Specialist terms will be used appropriately and for the most part correctly.	The solutions are fully tested and there is little doubt that the solutions presented are fully functional. This material has been presented in a clear and relevant way which is simple to navigate. A high level of written communication is obvious throughout the task and specialist terms/technology with accurate use of spelling is used. Grammar and punctuation is consistently correct. Information is presented in a coherent and structured format. The evaluation will be relevant, clear, organised and presented in a structured and coherent format. [8-10]	Total/45	4 Max 10 23
	little or no use of specialist	basic functionality.	solutions presented are fully	There is evidence of some testing for function throughout the report but this lacks organisation and is not complete. The evaluation is minimal and adds little.	
		1			

GCSE Computing

Unit A452: Practical investigation

Exemplar Material for A452 SAM

INSIDE THE MACHINE

Most computers are built to the same basic architecture – the Von Neumann architecture. They have **memory** where program instructions and other data are stored and they have a **processor** that decodes and carries out the program instructions.

The processor has special memory locations called registers. This is where the program instructions are acted on. There is a working demonstration of how the processor and memory interact called the Little Man Computer (LMC). Some versions run as an embedded applet in a browser. The details are here:http://www.atkinson.vorku.ca/~sychen/research/LMC/LMCHome.html

The applet itself is here: http://www.atkinson.yorku.ca/~sychen/research/LMC/LittleMan.html

Alternatively you can access another version from: http://www.cs.ru.nl/~erikpoll/Teaching/III/Imc/

- 1 Investigate the instruction set provided with one implementation of the LMC.
- **2** Load and run at least two of the demonstration programs supplied with the implementation.
- 3 Explain in your own words what happens as each of the instructions is executed.
- 4 Write programs to run in LMC:
 - (i) Take in two numbers and output the smaller first, then the larger
 - (ii) Produce a multiplication table from 1 to 10 for any number input by the user
 - (iii) Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

- **5** Produce an evaluation of your solutions.
- **6** Write a conclusion about the possibility of writing effective and complex programs with only a limited instruction set.

The Little Man Computer

Task 1 Investigate the instruction set provided with one implementation of the LMC.

The Little Man Computer is like a real computer but not as powerful. It can only do some of the things that a real computer can do. The instruction set is a list of the commands you can use with it. It has ten of these and they let you move data, add, subtract and check what is happening after you do something.

LDA: load the accumulator with something. STA: store what is in the accumulator in memory. ADD: add data from memory into the accumulator. SUB: subtract data in memory from the accumulator. INP: input a number – it goes into the accumulator. OUT: output what is in the accumulator. BRZ: branch to the place indicated if there is a zero in the accumulator. BRP: branch to the place indicated if the number if the accumulator has a zero or a positive number in it. BRA: branch anyway HLT: halt the program DAT: this shows you where data is kept. These instructions can be given either as machine code numbers or as assembly language mnemonics.

I tried some of the instructions in the LMC.

INP STA NUM INP SUB NUM OUT HLT NUM DAT

This program takes two inputs and subtracts the second one from the first. Here is the LMC when the program has been compiled.

Little	Man (Message Box:								
0	1	2	3	4	5	6	7	8	9	INP STA NUM
901	306	901	206	902	0	3	0	0	0	INP
10	11	12	13	14	15	16	17	18	19	SUB NUM OUT
0	0	0	0	0	0	0	0	0	0	HLT NUM DAT
20	21	22	23	24	25	26	27	28	29	

You can see that INP has been changed to 901 and stored in cell 0.

STA has become 3 and the 06 means that the data is to be stored in location 6. Location 6 is the place where the compiler has decided that NUM must go.

Cell 2 has another INP or 901 in it. Cell 3 has 2 for subtract and 06 for where it must look to get the number to subtract.

902 in cell 4 outputs the result from the accumulator.

0 in 5 is the halt instruction.

Task 2. Load and run at least two of the demonstration programs supplied with the implementation.

I first tried this example from the web site.

Program 1

INP OUT HLT

Here it is in the LMC.

Little	Little Man Computer Memory:											
0	1	2	3	4	5	6	7	8	9			
0	0	0	0	0	0	0	0	0	0	HLT		

All this program does is to take a number from the user and output it. Here is evidence that I did that.

Running the program

When the run button is clicked, the program counter is set to 1 and you can see that input is required.

Input is required by instruction 1								
	Clear Messages	Compile Program						
Accumulator:	0	Program Counter:	1					
MEM Address:	1	MEM Data:	901					
In-Box:		Out-Box:						
	Enter							
I entered the number 4.								
Accumulator:	0							
MEM Address:	1							
In-Box:	4							
	Enter							
Here the number 4	is shown in the o	utbox.						
Accumulator:	4	Program Counter:	2					
MEM Address:	2	MEM Data:	0					
In-Box:	4	Out-Box:	4					
	Enter							
The third instructio	n is HLT so the pro	ogram ends.						

I then tried another program from the web site. It is supposed to add then subtract numbers.

Program 2

INP STA FIRST INP ADD FIRST OUT INP SUB FIRST OUT HLT FIRST DAT

Here it is compiled.

Little	Little Man Computer Memory: Message Box:									
0	1	2	3	4	5	6	7	8	9	9 : FIRST DAT
901	309	901	109	902	901	209	902	0	0	Resolving Labels
10	11	12	13	14	15	16	17	18	19	FIRST is a label for Address : 9
0	0	0	0	0	0	0	0	0	0	Line 0 : INP
20	21	22	23	24	25	26	27	28	29	Opcode = 901 Line 1 : STA
0	0	0	0	0	0	0	0	0	0	Opcode = 3 Address = 09
30	31	32	33	34	35	36	37	38	39	Opcode = 901
0	0	0	0	0	0	0	0	0	0	Line 3 : ADD Opcode = 1 Address = 09
40	41	42	43	44	45	46	47	48	49	Line 4 : OUT Opcode = 902
0	0	0	0	0	0	0	0	0	0	Line 5 : INP Opcode = 901
50	51	52	53	54	55	56	57	58	59	Line 6: SUB Opcode = 2 Address = 09
0	0	0	0	0	0	0	0	0	0	Line 7 : OUT
60	61	62	63	64	65	66	67	68	69	Opcode = 902 Line 8 : HLT
0	0	0	0	0	0	0	0	0	0	Opcode = 0 Line 9 : DAT
70	71	72	73	74	75	76	77	78	79	Program Successfully Compiled

I then ran it. Here is my first input which is 8.

Input is required by instruction 1

	Clear Messages
Accumulator:	0
MEM Address:	1
In-Box:	8
	Enter

I then entered 7. I expected the answer 15 to be output.

Input is required by instruction 6										
	Clear Messages	Compile Program								
Accumulator:	15	Program Counter:	6							
MEM Address:	1	MEM Data:	901							
In-Box:		Out-Box:	15							
	Enter									

Here you can see 15 in the out-box.

will now enter 10. I expect 2 to be output.										
Accumulator:	2	Program Counter:	8							
MEM Address:	8	MEM Data:	0							
In-Box:	10	Out-Box:	2							

Task 3. Explain in your own words what happens as each of the instructions is executed.

Program 1

INP

This takes a number from the user and puts it in the accumulator.

OUT

This outputs the value in the accumulator.

HLT

This stops the program.

Program 2

INP

This takes a number from the user and puts it in the accumulator. In my test, this is 8.

STA FIRST

This stores that number in the memory cell labelled FIRST.

INP

This takes a number from the user and puts it in the accumulator. In this case, I used 7.

ADD FIRST

This adds the number in FIRST to whatever is in the accumulator, which is the number last entered. 8+7=15 so that goes into the accumulator.

OUT

This outputs what is in the accumulator, which is the result of the addition. In this case, it is 15.

INP

This takes a number from the user and puts it in the accumulator. I used 10 in this case.

SUB FIRST

This takes away the number in FIRST from whatever is now in the accumulator. 10-8=2 so 2 is now in the accumulator.

OUT

This outputs the result, which in my test was 2.

HLT This halts the program.

FIRST DAT This assigns a label FIRST to a memory location which is used to store the first value input in this program.

Task 4. Write programs to run in LMC:

i. Take in two numbers and output the smaller first, then the larger.

Produce evidence to show that you have planned, written and tested your code.

Here is the pseudocode to solve this problem.

Get the first number Store it as FIRST Get the second number Store it as SECOND Subtract the first number (the second is still in the accumulator) If the result is positive output the second number then the first Otherwise output the first number followed by the second.

If we store both numbers, then we can bring them back to output them.

Here is the LMC code that achieves this.

INP STA FIRST INP STA SECOND SUB FIRST **BRP SECONDBIG** LDA SECOND OUT LDA FIRST OUT **BRA PROGEND** SECONDBIG LDA FIRST OUT LDA SECOND OUT PROGEND HLT FIRST DAT SECOND DAT

Here I run it with 50 followed by 60. I expect the numbers to come out in the same order.

Accumulator:	0	Program Counter:	1
MEM Address:	1	MEM Data:	901
In-Box:	50	Out-Box:	

Here is the output box after I ran this.

Accumulator:	60	Program Counter:	15
MEM Address:	15	MEM Data:	0
In-Box:	60	Out-Box:	60

It worked correctly, although you cannot see the 50 because it happened very quickly.

I will now test it the other way round. I will enter 100 then 20. I expect the 20 to come out first then the 100.

This worked too. Here is the 100 showing at the end.

Accumulator:	100	Program Counter:	15
MEM Address:	15	MEM Data:	0
In-Box:	20	Out-Box:	100

The output happens quickly so it is best to run it using the slow button.

Here is the output when tested with 3 then 4. The number 4 is the last output.

	Clear Messages	Compile Program	
Accumulator:	4	Program Counter:	15
MEM Address:	15	MEM Data:	0
In-Box:	4	Out-Box:	4

Here we test it with 4 then 3. Again 4 is the last output with 3 being visible as the last input into the in-box.

Accumulator:	4	Program Counter:	15
MEM Address:	15	MEM Data:	0
In-Box:	3	Out-Box:	4

ii. Produce a multiplication table from 1 to 10 for any number input by the user

Produce evidence to show that you have planned, written and tested your code.

This is hard to do with LMC because it can't do multiplication. I have found out that to get round that, you have to add the numbers together as many times as you need

So, to make this happen, what we need to do first is to get the number from the user, then add it to itself as many times as needed. I will first test this by writing a program to multiply a number by 3. I will put the 3 in a memory location and then add the input number together 3 times.

I will set up a counter to count how many times this has happened.

Pseud	ocode
-------	-------

Get number Store number Add number Get counter Add 1 Get THREE Take away counter If positive go back and do another addition Output result INP **STA NUMBER** LOOP LDA TOTAL ADD NUMBER STA TOTAL LDA COUNTER ADD ONE STA COUNTER LDA THREE SUB COUNTER **BRP LOOP** LDA TOTAL OUT HLT THREE DAT 003 COUNTER DAT 001 ONE DAT 001 NUMBER DAT TOTAL DAT

I tested this by entering the number 4. I expected this to be multiplied by 3 and give the answer 12.

Accumulator:	12	Program Counter:	13
MEM Address:	13	MEM Data:	0
In-Box:	4	Out-Box:	12

You can see that it worked. Just to be sure, I will test it with 5. I expect the answer 15.

Accumulator:	15	Program Counter:	13
MEM Address:	13	MEM Data:	0
In-Box:	5	Out-Box:	15

That worked too.

iii. Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

This is quite easy to do. You take the five numbers, store them in separate locations, then output them in whatever order you want. In this case it will be in reverse order.

Here is the LMC code.

INP STA ONE INP STA TWO INP STA THREE INP STA FOUR INP STA FIVE LDA FIVE OUT LDA FOUR OUT LDA THREE OUT LDA TWO OUT LDA ONE OUT ONE DAT

TWO DAT THREE DAT FOUR DAT FIVE DAT

I tested this by inputting 10, 20, 30, 40, 50. I expected the output to be 50, 40, 30, 20, 10. Here is the final output:

Accumulator:	10	Program Counter:	25
MEM Address:	25	MEM Data:	0
In-Box:	50	Out-Box:	10

You can see that the in-box still has the 50 in it but the out-box has finished on 10, which is correct.

5. Produce an evaluation of your solutions.

I am pleased with what I did and most of the solutions work well. I didn't manage to finish the multiplication because I ran out of time.

6. Write a conclusion about the possibility of writing effective and complex programs with only a limited instruction set.

It would be hard to write something big in LMC. Even comparing two numbers took ages to do. It would be better if it had more instructions and a proper if.. then. So, I think that if you wanted to do something complex like write a word processor, it would take too long.

GCSE Computing Controlled Assessment

Unit A452 Practical Investigation

Unit Recording Sheet

 Please read the instructions printed on the other side of this form. One of these Unit Recording Sheets, suitably completed, should be attached to the assessed work of each candidate.

 Unit
 A452
 Year

 Centre Name
 sample
 Centre Number

 Candidate Name
 sample A
 Candidate Number

		Guidance		Teacher Comment	Mark
Practical Investigation	There may be little or no evidence of any practical investigation. The evidence supplied is minimal and poorly documented with little relevance to the set task. The practical evidence may all be the result of group or teacher led activity with little input from the student.	There is evidence of a practical investigation The evidence supplied is documented clearly and is relevant to the set task There is evidence of individual research beyond the group activity and any teacher led activity. The practical investigations show signs of planning but there may be omissions made in assessing the consequences.	There is evidence of a well structured practical investigation The evidence supplied is well organised and clearly relevant to the set task There is extensive evidence of individual practical investigation beyond the group activity and any teacher led activity The practical investigation shows clear signs of planning and a structured approach to evidence gathering to provide a complete investigation of the set topic area and beyond. Practical investigation has been carried out with skill and due regard to safety issues.	Some good evidence of investigation beyond the initial starting point but, while qquite good, it does lack some depth of treatment. The tasks are carried out with some planning including evidence of flow charts and some detail of the approach taken. Not all the choices made are clearly explained.	12 Max
	[0 - 5]	[6 - 10]	[11 - 15]		15

Effective and efficient use of techniques		The techniques will be used appropriately giving working solutions to most of the parts of the problem. Some parts of the solution may be executed in a partial or inefficient manner.	The techniques are used appropriately in all cases giving an efficient, working solution for all parts of the problem.	Effective solutions and quite efficient but lacks explanation in some places.	8 Max
	[0 - 3]	[4 - 7]	[8 - 10]		10
Technical understanding	The candidate demonstrates a limited understanding of the technical issues related to the scenario. Little detail is presented. There will be limited indication of any evidence provided being analysed. There is little correct use of technical terminology.	The candidate demonstrates a reasonable understanding of the technical issues related to the scenario. The amount of detail presented is adequate to support the arguments. There is some analysis carried out on the evidence collected. The use of technical terminology is largely correct but it may be limited.	The candidate demonstrates a thorough and secure understanding of the technical issues related to the scenario. A wide range of relevant and detailed information is presented. The evidence which has been collected is fully analysed. Technical terminology is used correctly. At the top end of the band, this will be extensive and confidently used.	There is evidence of good understanding of the technical aspects and basic features are used effectively to demonstrate a good understanding, but explanations lack the deatil that would demonstrate a full understanding.	9 Max
	[0 - 3]	[4 - 7]	[8 - 10]		10

Conclusions and evaluation	Conclusions are weak or missing with little or no justification. The solution is presented with little if any evidence of testing. The evidence of written communication is limited with little or no use of specialist terms. There are many errors in spelling, punctuation and grammar. Information may be ambiguous or disorganised. There is limited if any reference to evidence. The evaluation may be simplistic with little or no relevance.	The material has structure and coherence with justifiable conclusions being reached although there may be some omissions. There is evidence that the solutions have been tested for basic functionality. Candidates will have produced a sound evaluation which reviews some aspects of the task. Evidence of good written communication using some specialist terms. There are few errors in spelling, grammar and punctuation. Information for the most part will be presented in a structured format. Specialist terms will be used appropriately and for the most part correctly.	Thorough and convincing conclusions have been reached, which are borne out by the research carried out by the candidate. The solutions are fully tested and there is little doubt that the solutions presented are fully functional. This material has been presented in a clear and relevant way which is simple to navigate. A high level of written communication is obvious throughout the task and specialist terms/technology with accurate use of spelling is used. Grammar and punctuation is consistently correct. Information is presented in a coherent and structured format. The evaluation will be relevant, clear, organised and presented in a structured and coherent format.	A decent attempt to provide evidence but the testing is limited in some cases, otherwise well organised with a good evaluation of the topic.	8 Max 10
	[0 - 3]	[4 – 7]	[8- 10]	· · · · · · · · · · · · · · · · · · ·	37
				Total/45	51

GCSE Computing

Unit A452: Practical investigation

Exemplar Material for A452 SAM

INSIDE THE MACHINE

Most computers are built to the same basic architecture – the Von Neumann architecture. They have **memory** where program instructions and other data are stored and they have a **processor** that decodes and carries out the program instructions.

The processor has special memory locations called registers. This is where the program instructions are acted on. There is a working demonstration of how the processor and memory interact called the Little Man Computer (LMC). Some versions run as an embedded applet in a browser. The details are here:<u>http://www.atkinson.yorku.ca/~sychen/research/LMC/LMCHome.html</u>

The applet itself is here: <u>http://www.atkinson.yorku.ca/~sychen/research/LMC/LittleMan.html</u>

Alternatively you can access another version from: <u>http://www.cs.ru.nl/~erikpoll/Teaching/III/Imc/</u>

- 1 Investigate the instruction set provided with one implementation of the LMC.
- 2 Load and run at least two of the demonstration programs supplied with the implementation.
- 3 Explain in your own words what happens as each of the instructions is executed.
- 4 Write programs to run in LMC:
 - (i) Take in two numbers and output the smaller first, then the larger
 - (ii) Produce a multiplication table from 1 to 10 for any number input by the user
 - (iii) Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

- 5 Produce an evaluation of your solutions.
- 6 Write a conclusion about the possibility of writing effective and complex programs with only a limited instruction set.

The Little Man Computer

Task 1. Investigate the instruction set provided with one implementation of the LMC.

The Little Man Computer is a simulation of what happens in a real computer. It is a much reduced version because it only has ten instructions in its instruction set instead of over a hundred in a typical PC. Also, it only has four registers against over twenty in modern PCs. The registers are the accumulator, the program counter, the memory address register and the memory data register.

Little	Man (Comp	uter N	lemor	y:					Message Box:	
0	1	2	3	4	5	6	7	8	9	· · · · · · · · · · · · · · · · · · ·	h.
0	0	0	0	0	0	0	0	0	0		
10	11	12	13	14	15	16	17	18	19		
0	0	0	0	0	0	0	0	0	0		
20	21	22	23	24	25	26	27	28	29		
0	0	0	0	0	0	0	0	0	0		
30	31	32	33	34	35	36	37	38	39		
0	0	0	0	0	0	0	0	0	0		
40	41	42	43	44	45	46	47	48	49		
0	0	0	0	0	0	0	0	0	0		
50	51	52	53	54	55	56	57	58	59		
0	0	0	0	0	0	0	0	0	0		
60	61	62	63	64	65	66	67	68	69		-
0	0	0	0	0	0	0	0	0	0	the register	S
70	71	72	73	74	75	76	77	78	79		e
0	0	0	0	0	0	0	0	0	0	Clear Messages Compile Program	
80	81	82	83	84	85	86	87	88	89		-
0	0	0	0	0	0	0	0	0	0	MEM Address: 0 MEM Data: 0	1
90	91	92	93	94	95	96	97	98	99		
0	0	0	0	0	0	0	0	0	0		
									Clear	r Reset Run Slow Step Halt	

This shot shows the start up screen before a program has been entered. A program can be typed or pasted into the message box in assembly language mnemonics and then compiled to produce the machine code by clicking the button.

The instruction set

Here are the ten instructions together with their assembly language and machine code equivalents. Although there are only ten, they can be combined in a program to do many useful tasks.

Instruction	Mnemonic	Code	What it means
LOAD	LDA	5	Copy a number into the accumulator.
STORE	STA	3	Store a number at a stated address
ADD	ADD	1	Add a number from a stated address to whatever is in the accumulator.
SUBTRACT	SUB	2	Subtract the number at a stated address from the accumulator.
INPUT	INP	901	Take an input from the in-box and put it in the accumulator.
OUTPUT	OUT	902	Output what is in the accumulator to the out-box.
BRANCH IF ZERO	BRZ	7	Branch to the stated address if zero is in the accumulator.
BRANCH IF ZERO OR POSITIVE	BRP	8	Branch to the stated address if zero or a positive number is in the accumulator.
BRANCH ALWAYS	BRA	6	Branch to the stated address without checking the accumulator.
END	HLT	000	End the program.
DATA LOCATION	DAT	(the data)	This marks where a particular item of data is to be found. It allows you to label it.

These instructions can be given either as machine code numbers or as assembly language mnemonics.

Example instructions in use

Here are some examples of how the instruction mnemonics can be used.

LDA 12: load the accumulator with whatever is in location 12.

STA 20: store whatever is in the accumulator in location 20.

ADD 20: add whatever is in location 20 to whatever is in the accumulator.

SUB 20: subtract whatever is in location 20 from the accumulator.

INP: this just waits for an input then copies it into the accumulator, replacing whatever is already in there.

OUT: this copies whatever is in the accumulator to the out-box.

BRZ 20: branch to the instruction in location 20 if the accumulator contains zero.

BRP 20: branch to the instruction in location 20 if the accumulator contains zero or any positive number.

BRA 20: unconditionally branch to the instruction in location 20.

HLT: stop the program.

Task 2. Load and run at least two of the demonstration programs supplied with the implementation.

AND

Task 3. Explain in your own words what happens as each of the instructions is executed.

Here is the simplest one that is on the website.

INP OUT HLT

Here it is in the message box.

Little	Man (Comp	uter N	lemor	y:					Message Box:				
0	1	2	3	4	5	6	7	8	9	INP OUT			*	
0	0	0	0	0	0	0	0	0	0	HLT				
10	11	12	13	14	15	16	17	18	19					
0	0	0	0	0	0	0	0	0	0					
20	21	22	23	24	25	26	27	28	29					
0	0	0	0	0	0	0	0	0	0					
30	31	32	33	34	35	36	37	38	39					
0	0	0	0	0	0	0	0	0	0					
40	41	42	43	44	45	46	47	48	49					
0	0	0	0	0	0	0	0	0	0					
50	51	52	53	54	55	56	57	58	59					
0	0	0	0	0	0	0	0	0	0					
60	61	62	63	64	65	66	67	68	69					
0	0	0	0	0	0	0	0	0	0					
70	71	72	73	74	75	76	77	78	79				-	
0	0	0	0	0	0	0	0	0	0		Clear Messages	Compile Program		
80	81	82	83	84	85	86	87	88	89	Accumulator:	0	Program Counter:	0	1
0	0	0	0	0	0	0	0	0	0	MEM Address:	0	MEM Data:	0	i
90	91	92	93	94	95	96	97	98	99	In-Box:		Out-Box:		1
0	0	0	0	0	0	0	0	0	0		Enter			
	Clear Reset Run Slow Step Halt													

When the compile button is clicked, the program is converted into machine code and placed in memory.

Little	Man (Comp	uter M	lemor	y:		Message Box:			
0	1	2	3	4	5	6	7	8	9	
901	902	0	0	0	0	0	0	0	0	Trying to compile
10	11	12	13	14	15	16	17	18	19	0 : INP 1 : OUT
0	0	0	0	0	0	0	0	0	0	2 : HLT
20	21	22	23	24	25	26	27	28	29	Resolving Labels
0	0	0	0	0	0	0	0	0	0	Translating Mnemonics Line 0 : INP
30	31	32	33	34	35	36	37	38	39	Opcode = 901
0	0	0	0	0	0	0	0	0	0	Line 1 : OUT Opcode = 902
40	41	42	43	44	45	46	47	48	49	Line 2 : HLT Opcode = 0
0	0	0	0	0	0	0	0	0	0	Program Successfully Compiled

You can see that memory location 0 now contains 901 which is the instruction (opcode) for INP. Location 1 contains 902 which is OUT. Location 2 contains 0 which is HLT.

Running the program

When the run button is clicked, the program counter is set to 1 and you can see that input is required.

Input is required by instruction 1													
	Clear Messages	Compile Program											
Accumulator:	0	Program Counter:	1										
MEM Address:	1	MEM Data:	901										
In-Box:		Out-Box:											
	Enter												

We shall enter the number 4.

The number 4 is copied into the accumulator and instruction 2 copies it into the out-box.

Accumulator:	4	Program Counter:	2
MEM Address:	2	MEM Data:	0
In-Box:	4	Out-Box:	4
	Enter		

The third instruction is HLT so the program ends.

PC = 2 : Instruction in Memory 2 is 0 --> 0 represents: HALT --> Execution Stopped Processor Stopped

Program 2

INP STA FIRST INP ADD FIRST OUT SUB FIRST OUT HLT FIRST DAT

This program adds and subtracts numbers. Here it is in the message box.

Litt	Little Man Computer Memory: Message Box:										
0	1	2	3	4	5	6	7	8	9	INP STA FIRST	
0	0	0	0	0	0	0	0	0	0	INP	
10) 11	12	13	14	15	16	17	18	19	ADD FIRST OUT	
0	0	0	0	0	0	0	0	0	0	INP SUB FIRST	
20	21	22	23	24	25	26	27	28	29	OUT	
0	0	0	0	0	0	0	0	0	0	FIRST DAT	

When it is compiled, you can see the machine code in the memory locations.

Little	Man (Comp	uter M	lemor	у:		Message Box:			
0	1	2	3	4	5	6	7	8	9	9 : FIRST DAT
901	309	901	109	902	901	209	902	0	0	Resolving Labels
10	11	12	13	14	15	16	17	18	19	FIRST is a label for Address : 9
0	0	0	0	0	0	0	0	0	0	Translating Mnemonics Line 0 : INP
20	21	22	23	24	25	26	27	28	29	Opcode = 901
0	0	0	0	0	0	0	0	0	0	Opcode = 3 Address = 09 Line 2 : INP
30	31	32	33	34	35	36	37	38	39	Opcode = 901
0	0	0	0	0	0	0	0	0	0	Line 3 : ADD Opcode = 1 Address = 09
40	41	42	43	44	45	46	47	48	49	Line 4 : OUT Opcode = 902
0	0	0	0	0	0	0	0	0	0	Line 5 : INP Opcode = 901
50	51	52	53	54	55	56	57	58	59	Line 6 : SUB Opcode = 2 Address = 09
0	0	0	0	0	0	0	0	0	0	Line 7 : OUT
60	61	62	63	64	65	66	67	68	69	Opcode = 902 Line 8 : HLT
0	0	0	0	0	0	0	0	0	0	Opcode = 0 Line 9 : DAT
70	71	72	73	74	75	76	77	78	79	Program Successfully Compiled

Address 0 contains 901 which means INP. It is asking for a number to be input, which is then stored in the accumulator.

Address 1 contains 309. This means store what is in the accumulator in address labelled FIRST, which is in fact address 9. Memory address 9 has been chosen by the assembler as being where the data labelled FIRST is to be stored.

Address 2 contains 901, asking for another input. This will go into the accumulator.

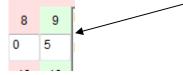
Address 3 contains 109. 1 is for ADD and 09 is address 9, so it means add to the accumulator whatever is in address 9, which is of course where the data labelled FIRST is found.

Address 4 contains 902 which is OUT. So the result of the addition, the number now in the accumulator is output.

Address 5 contains 901, asking for another input.

Address 6 contains 209 which means 2 for SUB and 09 means subtract from the accumulator whatever is in FIRST, i.e. address 9.

Address 7 contains another 902 which means output the contents of the accumulator. Address 8 contains 0 which is HLT or halt the program.


We will now run the program with the values 5, 10 and 12. We expect the first output to be 15 because of the addition of 5 and 10. The second output will be 7 because 5 will be subtracted from the number 12 that we input.

Here is 5 as the first input.

Input is required by instruction 1

	Clear Messages
Accumulator:	0
MEM Address:	1
In-Box:	5
	Enter

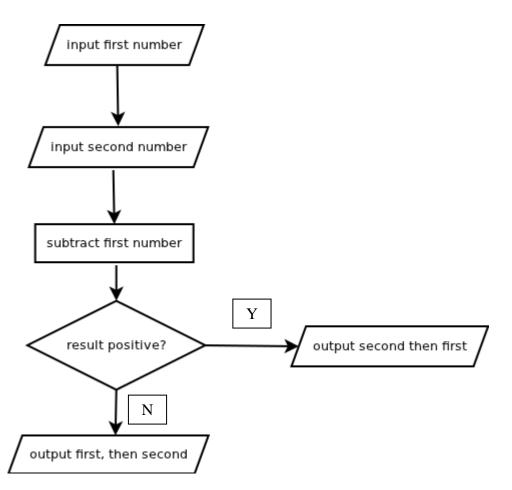
We can see that it has been stored in location 9 which is labelled FIRST.

We enter 10.

Accumulator:	5
MEM Address:	1
In-Box:	10
	Enter

We can see that the accumulator has taken the value 15 and also it has been output. You can see in the MEM data register that the computer is currently holding the OUT instruction, 901. The next instruction will be 6, which is in the program counter.

Accumulator:	15	Program Counter:	6
MEM Address:	1	MEM Data:	901
In-Box:		Out-Box:	15


The instruction in 6 is again INP. We now enter 12 and click Enter. This puts 12 into the accumulator. Instruction 7 is immediately followed which is SUB FIRST. This subtracts 5, which is stored in the location labelled FIRST from the accumulator. We now have 7 in the accumulator. Instruction 7 is OUT, so the 7 is copied into the outbox. The next and final instruction in the program counter is 8, which halts the program.

Accumulator:	7	Program Counter:	8
MEM Address:	8	MEM Data:	0
In-Box:	12	Out-Box:	7

Task 4. Write programs to run in LMC:

i. Take in two numbers and output the smaller first, then the larger.

Produce evidence to show that you have planned, written and tested your code.

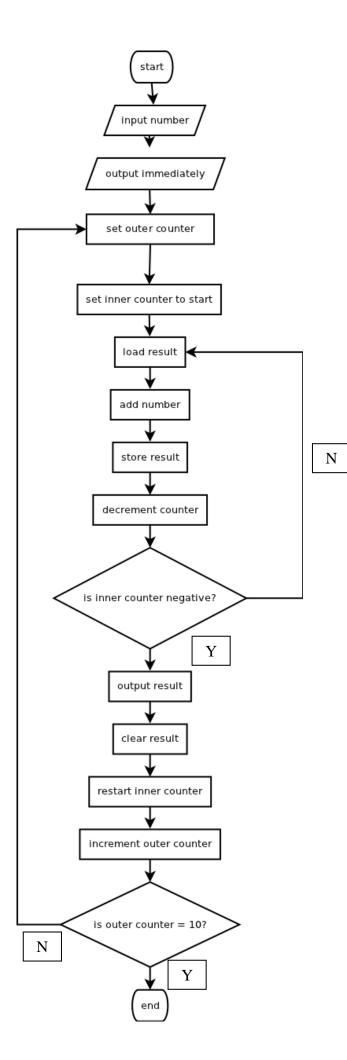
Here is the LMC code that achieves this.

INP STA FIRST INP STA SECOND

SUB FIRST
BRP SECONDBIG
LDA SECOND
OUT
LDA FIRST
OUT
BRA PROGEND
SECONDBIG LDA FIRST
OUT
LDA SECOND
OUT
PROGEND HLT
FIRST DAT
SECOND DAT

The output happens quickly so it is best to run it using the slow button. Here is the output when tested with 3 then 4. The number 4 is the last output.

	Clear Messages	Compile Program	
Accumulator:	4	Program Counter:	15
MEM Address:	15	MEM Data:	0
In-Box:	4	Out-Box:	4


Here we test it with 4 then 3. Again 4 is the last output with 3 being visible as the last input into the in-box.

Accumulator:	4	Program Counter:	15
MEM Address:	15	MEM Data:	0
In-Box:	3	Out-Box:	4

ii. Produce a multiplication table from 1 to 10 for any number input by the user.

Produce evidence to show that you have planned, written and tested your code.

This requires multiplication to be done using multiple addition. The program asks for a number and then adds it to itself, the it adds it to itself again, outputting each result as it goes and so on until it has done this for each number up to ten. This is controlled by a loop, which terminates when the result of the countdown is negative. To make this happen ten times, the initial number is first output and then the addition process is made to happen ten times by having an outer loop controlled by another counter which increments each time a number has been output. When the counter produces a negative number when subtracted from 9, the loop terminates because all ten products have been output.

Here is the LMC code that makes this work.

INP STA NUMBER1 OUT OUTERLOOP LDA COUNTER **STA NUMBER2 INNERLOOP LDA RESULT** ADD NUMBER1 STA RESULT LDA NUMBER2 SUB ONE STA NUMBER2 **BRP INNERLOOP** LDA RESULT OUT LDA ZERO STA RESULT LDA ONE **STA NUMBER2** LDA COUNTER ADD ONE STA COUNTER LDA NINE SUB COUNTER **BRP OUTERLOOP** HLT ONE DAT 001 NUMBER1 DAT 000 NUMBER2 DAT 001 COUNTER DAT 001 **RESULT DAT 000** NINE DAT 009 ZERO DAT 000

Here is the LMC with this code successfully compiled.

Little	Man (Comp	uter M	emor	y:					Message Box:
0	1	2	3	4	5	6	7	8	9	Line 16 : LDA Opcode = 5 Address = 25
901	326	902	528	327	529	126	329	527	225	Line 17 : STA
10	11	12	13	14	15	16	17	18	19	Opcode = 3 Address = 27 Line 18 : LDA
327	805	529	902	531	329	525	327	528	125	Opcode = 5 Address = 28 Line 19 : ADD
20	21	22	23	24	25	26	27	28	29	Opcode = 1 Address = 25 Line 20 : STA
328	530	228	803	0	1	0	1	1	0	Opcode = 3 Address = 28 Line 21 : LDA
30	31	32	33	34	35	36	37	38	39	Opcode = 5 Address = 30
9	0	0	0	0	0	0	0	0	0	Line 22 : SUB Opcode = 2 Address = 28
40	41	42	43	44	45	46	47	48	49	Line 23 : BRP Opcode = 8 Address = 03
0	0	0	0	0	0	0	0	0	0	Line 24 : HLT Opcode = 0
50	51	52	53	54	55	56	57	58	59	Line 25 : DAT
0	0	0	0	0	0	0	0	0	0	Line 26 : DAT Line 27 : DAT
60	61	62	63	64	65	66	67	68	69	Line 28 : DAT Line 29 : DAT
0	0	0	0	0	0	0	0	0	0	Line 30 : DAT Line 31 : DAT
70	71	72	73	74	75	76	77	78	70	Program Successfully Compiled

We shall test this with 4 as an input. We expect to get the 4 times table, 4,8,12,16 etc up to 40. The correct values appeared one after the other in the out-box. Here is the end condition showing the 4 we originally input and the 40 as the final product. You can see that the accumulator is set to -1. This is the control that was used to terminate the outer loop.

		oomp			1.					message box.
0	1	2	3	4	5	6	7	8	9	PC = 20 · Instruction in Momony 20 is 229
901	326	902	528	327	529	126	329	527	225	PC = 20 : Instruction in Memory 20 is 328 > 3 represents: STORE
10	11	12	13	14	15	16	17	18	19	> 28 represents: target memory location > Value : 10 from the Accumulator storedto memory location 28
327	805	529	902	531	329	525	327	528	125	PC = 21 : Instruction in Memory 21 is 530
20	21	22	23	24	25	26	27	28	29	> 5 represents: LOAD > 30 represents: source memory location
328	530	228	803	0	1	4	1	10	0	> Value : 9 from memory location 30 transfered to the Accumulator
30	31	32	33	34	35	36	37	38	39	PC = 22 : Instruction in Memory 22 is 228
9	0	0	0	0	0	0	0	0	0	> 2 represents: SUBTRACT > 28 represents: source memory location
40	41	42	43	44	45	46	47	48	49	> Value : 10 from memory location 28 subtracted from the Accumulator
0	0	0	0	0	0	0	0	0	0	PC = 23 : Instruction in Memory 23 is 803
50	51	52	53	54	55	56	57	58	59	> 8 represents: BRANCH ON POSITIVE > 03 represents: target memory location
0	0	0	0	0	0	0	0	0	0	> BRANCH on POSITIVE to 03 Testing Accumulator > Accumulator -1 < 0, BRANCH not performed.
60	61	62	63	64	65	66	67	68	69	PC = 24 : Instruction in Memory 24 is 0
0	0	0	0	0	0	0	0	0	0	> 0 represents: HALT > Execution Stopped
70	71	72	73	74	75	76	77	78	79	Processor Stopped
0	0	0	0	0	0	0	0	0	0	Clear Messages Compile Program
80	81	82	83	84	85	86	87	88	89	Accumulator: -1 Program Counter: 24
0	0	0	0	0	0	0	0	0	0	MEM Address: 24 MEM Data: 0
90	91	92	93	94	95	96	97	98	99	In-Box: 4 Out-Box: 40
	_		_	_		_	_	_	_	

iii. Input five numbers and output them in reverse order.

Produce evidence to show that you have planned, written and tested your code.

This can be done quite simply, by setting up five storage locations to accept the five numbers. The numbers can then be called back in any order the programmer wants. The use of labels makes this easy.

This is straightforward so it does not need a flow chart to illustrate it.

Here is the LMC code.

INP STA ONE INP STA TWO INP STA THREE INP STA FOUR INP STA FIVE LDA FIVE OUT LDA FOUR OUT LDA THREE OUT LDA TWO OUT LDA ONE OUT ONE DAT TWO DAT THREE DAT

FOUR DAT FIVE DAT

Here is the final output from running this code. The inputs were 1,2,3,4,5. The LMC shows, at the end, the final output of 1 and the final input of 5. The outputs were 5,4,3,2,1 as expected.

Little	Man (Comp	uter M	emor	y:					Message Box:
0	1	2	3	4	5	6	7	8	9	> Value : 1 from memory location 20 transfered to the Accumulator
901	320	901	321	901	322	901	323	901	324	PC = 19 : Instruction in Memory 19 is 902
10	11	12	13	14	15	16	17	18	19	> 9 represents: INPUT or OUTPUT > 02 represents: I/O channel (01 = input, 02 = output)
524	902	523	902	522	902	521	902	520	902	> Value 1 copied from Accumulator to outbox
20	21	22	23	24	25	26	27	28	29	PC = 20 : Instruction in Memory 20 is 1 Invalid Instruction
1	2	3	4	5	0	0	0	0	0	
30	31	32	33	34	35	36	37	38	39	PC = 21 : Instruction in Memory 21 is 2 Invalid Instruction
0	0	0	0	0	0	0	0	0	0	PC = 22 : Instruction in Memory 22 is 3
40	41	42	43	44	45	46	47	48	49	Invalid Instruction
0	0	0	0	0	0	0	0	0	0	PC = 23 : Instruction in Memory 23 is 4 Invalid Instruction
50	51	52	53	54	55	56	57	58	59	
0	0	0	0	0	0	0	0	0	0	PC = 24 : Instruction in Memory 24 is 5 Invalid Instruction
60	61	62	63	64	65	66	67	68	69	PC = 25 : Instruction in Memory 25 is 0
0	0	0	0	0	0	0	0	0	0	> 0 represents: HALT > Execution Stopped
70	71	72	73	74	75	76	77	78	79	Processor Stopped
0	0	0	0	0	0	0	0	0	0	Clear Messages Compile Program
80	81	82	83	84	85	86	87	88	89	Accumulator: 1 Program Counter: 25
0	0	0	0	0	0	0	0	0	0	MEM Address: 25 MEM Data: 0
90	91	92	93	94	95	96	97	98	99	In-Box: 5 Out-Box: 1
•	•	•	0	•	•	0	•	•	•	

Task 5. Produce an evaluation of your solutions.

The solutions all work perfectly and the code is mostly efficient. The multiplication uses a nested loop to produce the output with minimal code. The reversing of the numbers could have been made more elegant with loops, but with so few operations, the savings would have been minimal if at all.

Task 6. Write a conclusion about the possibility of writing effective and complex programs with only a limited instruction set.

This depends on how limited the set is. A rich instruction set makes programming easier because there is an instruction to do most of the things that you require. With a smaller set, you have to group instructions together in order to carry out the most simple task. In the case of the LMC, it is not possible to multiply or divide using a direct instruction, so multiplication has to be achieved by adding numbers together multiple times and division by multiple subtractions. So, a lot is possible with a small instruction set, but it leads to much harder work and the likelihood of errors. Also, solutions that are produced by long sections of code are likely to be slower when executed than solutions implemented in hardware.

The hard work involved in writing a program in LMC can be shown by looking at a simple program written in VB. This one

```
Sub Main()
Dim totalnum As Integer
Dim multiplier As Integer
multiplier = 3
For num = 1 To 10
Console.WriteLine(multiplier * num)
Next num
Console.ReadKey()
```

End Sub

In just a few lines, we have something that would take many lines in LMC.

The LMC has further big limitations in that it cannot handle characters. So it can do a lot of quite sophisticated mathematical operations but it cannot do anything with text, which makes it useless for many important computing applications.

The LMC has no features for acting directly on the hardware like most larger instruction sets. It also doesn't have bitwise operations which reduces the variety of processes that can be carried out on data.

Candidates should complete all tasks.

The tasks are set so as to enable all the techniques identified in the specification to be demonstrated in their solution. The tasks provide opportunities to demonstrate a range of skills and all three tasks contribute to the overall mark awarded for this assessment. Marks are awarded for using the appropriate skills and techniques effectively and efficiently to produce a solution to these three tasks. Not all techniques will be required for each of the subtasks. You are required to identify the requirements for each task, design a solution using appropriate techniques, code the solution and test/evaluate this solution against the identified design criteria.

Task 1 Animal ages.

Design code and test a program to convert dog or cat years into their human equivalents. The program needs to ask the user for their choice of animal and should allow them to enter the age. The output should be the equivalent human age for the animal.

The formulae for converting these animal ages to human equivalents are:

DOG:

11 dog years per human year for the first 2 years, then 4 dog years per human year for each year after.

CAT:

15 years for the first year of life, 10 for the second year and 4 for each year after.

Task 2 System password.

Design, code test and evaluate a system to accept and test a password for certain characteristics.

It should be at least 6, and no more than 12 characters long

The system must indicate that the password has failed and why, asking the user to re-enter their choice until a successful password is entered.

A message to indicate that the password is acceptable must be displayed.

Password strength can be assessed against simple criteria to assess its suitability; for example a password system using only upper and lower case alphabetical characters and numeric characters could assess the password strength as:

WEAK if only one type used, e.g. all lower case or all numeric

MEDIUM if two types are used

STRONG if all three types are used.

For example

hilltop, 123471324, HAHGFD are all WEAK,

catman3 and 123456t are MEDIUM and

RTH34gd is STRONG

A message to indicate the password strength should be displayed after an acceptable password is chosen.

Task 3 High scores database. 15 marks

Design, code and test a system to store and manage user names and their highest score.

The system must be able to

create a file

add data to a file

locate data in the file by name and their highest score

delete an item and its associated data from the file

locate and update a high score for a user

GCSE Computing Controlled Assessment

Unit A453 Coding a solution

Unit Recording Sheet

Please r	read the instructions printed	on the other s	side of this form. One of these Unit Recording	ng Sheets, suitably completed, should be	attached to the asso	essed work o	of each cand	lidate.
Unit		A453				Year	201	_
Centre	e Name				Centre Numb	er		
Candi	date Name				Candidate Nu	umber		
								1
			Guidance		Teache	er Commen	it	Mark
					All three tasks h	ave heen	attempted	

of programming techniques	There is an attempt to solve parts of the tasks using few of the techniques identified.	There is an attempt at most parts of the tasks using several techniques.	There is an attempt to solve all of the tasks using most of the techniques listed.	All three tasks have been attempted though not all of task 3 was completed. Whilst not all techniques have been used a good number have.	
Use e	[0 - 2]	[3 - 4]	[5 - 6]		Max 6
t use of programming techniques	The techniques used may not be entirely appropriate to the problem and will only produce partially working solutions to a small part of the problem.	The techniques will be used appropriately giving working solutions to most of the parts of the problem. Some sections of the solution will be inefficiently coded.	The techniques are used appropriately in all cases giving an efficient, working solution for all parts of the problem.	The techniques are generally used appropriately but coding does often lack efficiency. Most parts of the problems have been completed but not all (e.g. task 3 delete).	7
Efficient	[0 - 4]	[5 - 8]	[9 - 12]		Max 12

URS666 Revised November 2010

A453/URS

Oxford Cambridge and RSA Examinations

The show prob show Cod	- 3]	[4 - 6]	any validation required.		Max 9
little unit unit unit unit unit unit unit unit	ere will be some evidence to ow a solution to part of the oblem with some evidence to ow that it works. ode will be presented with le or no annotation, the riable names not reflecting eir purpose and with little ganisation or structure.	There will be evidence to show how the solutions were developed. There will be some evidence of testing during development showing that many parts of the solution work. The code will be organised with sensible variable names and with some annotation indicating what sections of the code does.	[7 - 9] There will be detailed evidence showing development of the solution with evidence of systematic testing during development to show that all parts work as required. The code will be well organised with meaningful variable names and detailed annotation indicating the function of each section.	Code is lacking comments. Variable names are sometimes cryptic or ambiguous (e.g. the use of both pwd\$ and pass\$ in Exercise 2)	4 Max 9

that the system has been tested for function but the test plan will be limited in scope with little structure. There will be little or no evidence to show how the result matches the original criteria. The evidence of written communication is limited with little or no use of specialist terms. Errors in spelling, punctuation and grammar may be intrusive. Information may be ambiguous or disorganised. There will be some comments on others' and their own input into group work.	There will be a test plan covering many parts of the problem with some suggested test data. There will be evidence that the system has been tested using this data. There will be some evidence to show how the results of testing have been compared to the original criteria. There will be a brief discussion of how successful or otherwise the solutions are. Produces evidence of good written communication using some specialist terms. There will be few errors in spelling, grammar and punctuation. Information for the most part will be presented in a structured format. They will have commented on their own and others' contribution to any group work and [4 - 6]	The test plan will cover all major success criteria for the original problem with evidence to show how each of these criteria have been met, or if they have not been met, how the issue might be resolved. There will be a full evaluation of the final solution against the success criteria. A high level of written communication will be obvious throughout the task and specialist terms/technology with accurate use of spelling will have been used. Grammar and punctuation will be used correctly and information will be presented in a coherent and structured format. They will provide an evaluation on theirs and others' contribution to any group activities. [7 - 9]	Testing has taken place but is far from exhaustive. There is some evidence of testing and programs working. There are a few SPaG errors and these are not intrusive Evaluation states whether tasks were successful but lacks any analysis.	4 Max 9
--	---	---	---	---------------

Guidance on Completion of this Form

- 1 **One** sheet should be used for each candidate.
- 2 Please ensure that the appropriate boxes at the top of the form are completed.
- 3 Using the guidance identify the most appropriate mark range for the work and enter the mark awarded for each element in the mark column.
- 4 Add appropriate comments to assist the moderator in the 'Teacher Comment' column.
- 5 Add the marks for the strands together to give a total out of 45. Enter this total in the relevant box.

URS666 Revised November 2010

Oxford Cambridge and RSA Examinations

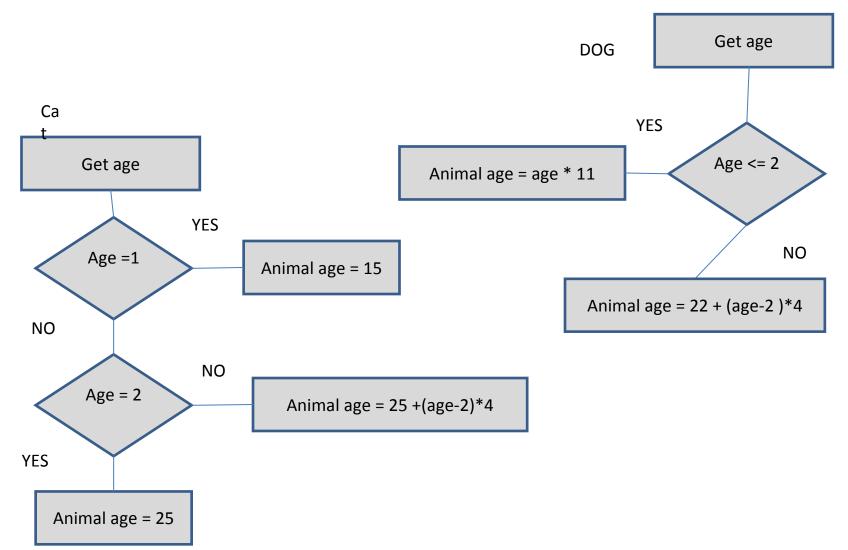
A453

Task 1: Animal Age

A system to convert cat or dog ages into human equivalents

Rules

DOG:


11 years per year for 2 years then 4 per extra year

CAT

15 years for first year, 10 for second then 4 per year

- Need to get choice of cat or dog
- Need to get animal age in whole years
- Need to convert animal age to human equivalent using rules and print result.

Design

Development and testing

The code ask the user to input either dog or cat If dog checks for age <=2 If <= 2 then age*2 If not then 22+ (age-2)*4

If cat checks if 1 year then age 15 If 2 years the age 25 If not then 25+(age-2)*4

```
PRINT "Cat and Dog age to human equivalent"
  REPEAT
   INPUT "Choose Cat or Dog, type cat or dog", a$
   INPUT "enter the age in years"; a
   IF a$="dog" THEN
    IF a<=2 THEN
     animalage = e^{*11}
    ELSE
     animalage = 22+(a-2)*4
    ENDIF
   ENDIF
   IF a$="cat" THEN
    IF a <= 1 THEN
     animalage =a* 15
    ELSE
     IF a <= 2 THEN
      animalage = 15 + (a-1)*10
     ELSE
      animalage= 25+(a-2)*4
     ENDIF
    ENDIF
   ENDIF
```

PRINT "Your animal's age in human years is", animalage

Development and testing

	Test	Data	Expected
2	dog ages	1	11
3		2	22
5	Cat ages	1	15
6		2	25
7		3	29

Evidence	📕 dogD	
Evidence	Cat and Dog age to human equivalent	
	Choose Cat or Dog, type cat or dog? dog	
	enter the age in years? 1	
	Your animal's age in human years is >RUN	11
	Cat and Dog age to human equivalent	
	Choose Cat or Dog, type cat or dog? dog	
	enter the age in years? 2	
	Your animal's age in human years is >RUN	22
	Cat and Dog age to human equivalent	
	Choose Cat or Dog, type cat or dog? cat	
	enter the age in years? 1	
	Your animal's age in human years is >RUN	15
	Cat and Dog age to human equivalent	
	Choose Cat or Dog, type cat or dog? cat	
	enter the age in years? 2	
	Your animal's age in human years is >RUN	25
	Cat and Dog age to human equivalent	
	Choose Cat or Dog, type cat or dog? cat	
	enter the age in years? 3	
	Your animal's age in human years is	29
	>_	

Evaluation:

I enjoyed doing this task. It was quite easy and it works as I expected.

A453

Task 2: Password strength sample task

- 1. Input a password
- 2. Is the password between 6 and 12 characters long?

No; reject and return to stage 1

YES; output message and carry on

3. Check each character of the password in turn

Is this character upper case? If yes flag that upper case is included

Is this character lower case? If yes flag that lower case is included

Is this character a number? If yes flag that number is included

- 4. If three flags set then the password is STRONG
- 5. If two flags set then the passwords is MEDIUM
- 6. If one flag set then the password is WEAK

Design

Check password length less than 6 error go back Check password length greater than 12 error go back Password OK

Check each character

between a and z, set low to 1 between A and Z set upp to 1 between 0 and 9 set num to 1

Add upp, low and num to get password strength

- 1 weak
- 2 medium
- 3 strong

Development & Testing

Dpassword

Password12345 too short Password12345678912345 too long Password123456 OK Weak >RUN Password123abc OK medium >RUN Password12ABcd OK strong >

pwd\$="NOTOK" REPEAT INPUT "Password" pass\$ IF LEN(pass\$)< 6 THEN PRINT "too short" ELSE IF LEN(pass\$)>12 THEN PRINT"too long" ELSE PRINT"OK" pwd\$="OK" ENDIF ENDIF UNTIL pwd\$="OK"

Check 6 to 12 characters in password. It works.

Development & Testing

B Dpassword	x
Password123456 OK Weak >RUN Passwordabcdefgh OK Weak >RUN PasswordABCDEFG OK Weak >RUN PasswordABC123 OK medium >RUNabcABC Mistake >RUN PasswordabcABC OK medium >RUN PasswordabcABC OK medium >RUN PasswordabcABC OK strong >	
OK	
Weak	
>RUN	
Passwordabcdefgh	
OK	
Weak	
>RUN	
PasswordABCDEFG	
OK	
Weak	
>RUN PasswordABC123	
OK	
medium	
>RUNabcABC	
PROHADCHDG	
Mistake	
>RUN	
PasswordabcABC	
OK	
medium	
>RUN	
Password12ABcd	
OK	
strong	
>	

upp=0 low=0 num=0 FOR x=1 TO LEN(pass\$) IF MID\$(pass\$,x,1) >="a" AND MID\$(pass\$,x,1)<="z" THEN low=1 ENDIF IF MID\$(pass\$,x,1) >="A" AND MID\$(pass\$,x,1)<="Z" THEN upp=1 ENDIF IF MID\$(pass\$,x,1) >="0" AND MID\$(pass\$,x,1)<="9" THEN num=1 ENDIF NEXT str=upp+low+num IF str=1 THEN PRINT "Weak" ELSE IF str=2 THEN PRINT "medium" FLSF IF str=3 THEN PRINT "strong" ENDIF ENDIF ENDIF

Checking mix of upper, lower and number gives right result. It works

Development & Testing

Completed code

Checks each character in the password in turn to see if it is between a and z then A and Z then 0 and 9. It sets low, upp and num to one if it finds one of them and adds them up to get the overall strength.

pwd\$="NOTOK" REPEAT INPUT "Password" pass\$ IF LEN(pass\$)< 6 THEN Checking PRINT "too short" ELSE length OK IF LEN(pass\$)>12 THEN PRINT"too long" ELSE PRINT"OK" pwd\$="OK" ENDIF ENDIF UNTIL pwd\$="OK" upp=0 10w=0 num=0 FOR x=1 TO LEN(pass\$) IF MID\$(pass\$,x,1) >="a" AND MID\$(pass\$,x,1)<="z" THEN low=1 ENDIF IF MID\$(pass\$,x,1) >="A" AND MID\$(pass\$,x,1)<="Z" THEN upp=1 ENDIF IF MID\$(pass\$,x,1) >="0" AND MID\$(pass\$,x,1)<="9" THEN num=1 ENDIF NEXT str=upp+low+num IF str=1 THEN PRINT "Weak" ELSE IF str=2 THEN PRINT "medium" ELSE IF str=3 THEN PRINT "strong" ENDIF ENDIF ENDIF F1 for Help 550 31,43 NUM

Evaluation of the solution

The program was tested with passwords with less than 6, more than 12 and it asked for the password again

The program was tested with mixed passwords using numbers. Upper case and lower case, it correctly got the right strength each time.

A453

Task 3: High scores table sample task

- A system to manage high scores
 - Create a file and be able to
 - Find a score for a user
 - Update a score for a user
 - Add a new user and score
 - Delete a user and score

- Need to check if the file exists, if not create one
- Need to load data from the file into an array
- Need to check if username exists to update score, if not error message
- Need an option system for edit, new and delete, otherwise error message
- Need to write changed data back to file

Design

Use routine to check if file exists and if not create it, otherwise open it. Read data into arrays for names and scores Get option edit, new or delete If edit search for name Get new score in array Write data back to file If new Get data for next array items Write data to file Delete Find data Delete from array Write data to file

Check file exists: if I try to open a file it returns 0 if the file doesn't exist so I can use this to decide if I need to create a file. I will use this code I found on a website and changed.

If openin file = 0 the create file else open file

IF OPENIN "c:\users\george\scores.txt" =0 THEN
 chan1 = OPENOUT "c:\users\george\scores.txt"
 CLOSE#chan1
 ENDIF

I need to create an array for the names and scores so that I can read in the data from a file.

I have created a simple text file with some names and scores to test this section of code. DIM name\$(10) DIM score(10)

x=1
IF OPENIN "c:\users\george\scores.txtt" =0 THEN
chan1 = OPENOUT "c:\users\george\scores.txt"
CLOSE#chan1
ENDIF

chan1=OPENIN "c:\users\george\scores.txt" REPEAT INPUT#chan1,name\$(x) INPUT#chan1,score(x) ix=x+1 UNTIL EOF#chan1 CLOSE#chan1 x=x-1

进 HighscoreD		
Current High Ø	Scores	
frank	66	
bill	77	
To edit a sco	ore press e	
To add a new ? e	name and scor	re press n
your user nai new score98	mefrank	
user name no† >RUN	t found	
Current High Ø	Scores	
frank	98	
bill	77	
To edit a sco	ore press e	
	name and scor	re press n

Works; frank has been updated from 66 to 98

The edit routine should search for the user name in the array, edit the score and write the new score to the array. If not found it should print and error message.

PRINT "To edit a score press e" PRINT "To add a new name and score press n" INPUT select\$ IF select\$="e" THEN INPUT "your user name" user\$ c=1 WHILE c<=x IF user\$= name\$(c) THEN INPUT "new score" newscore score(c) = newscore ENDIF IF c>=x THEN PRINT "user name not found" ENDIF c=c+1**ENDWHILE**

chan2=OPENOUT "c:\users\george\scores.txt"
FOR c=1 TO x
PRINT#chan2,name\$(c),score(c)
NEXT c
CLOSE#chan2

Current High So Ø	ores	
Frank	98	
bill	77	
To edit a score	press e	
	me and score press	n
? n		
new user namesa	ווי	
your high score >RUN	59	
Current High Sc	ores	
0		
Frank	98	
bill	77	
sam	59	
To edit a score	press e	
	ime and score press	n

To add the new data feature If n is pressed it starts this section of code: IF select\$="n" THEN

```
INPUT "new user name" newname$
INPUT "your high score" highscore
x=x+1
name$(x)= newname$
score(x)= highscore
```

```
chan2=OPENOUT "c:\users\george\scores.txt"
FOR c=1 TO x
PRINT#chan2,name$(c),score(c)
NEXT c
CLOSE#chan2
ENDIF
```

The data for sam has been added at the end of the array as expected.

Testing and evaluation

I tested the program as I wrote it and the evidence is in the development. This was not as easy as the first tasks and I was not able to complete the delete option.

The error message user not found keeps printing on screen and I think I can fix this by using an IF to check if a change has been made before printing this message.

DIM name\$(10)

DIM score(10)

```
x=1
```

IF OPENIN "c:\users\george\scores.txt" =0 THEN chan1 = OPENOUT "c:\users\george\scores.txt" CLOSE#chan1 ENDIF

chan1=OPENIN "c:\users\george\scores.txt" REPEAT INPUT#chan1,name\$(x) INPUT#chan1,score(x) x=x+1 UNTIL EOF#chan1 CLOSE#chan1 x=x-1

PRINT "Current High Scores" FOR i = 1 TO x PRINT name\$(i),score(i) NEXT i PRINT "To edit a score press e" PRINT "To add a new name and score press n" INPUT selectS IF select\$="e" THEN INPUT "your user name" user\$ c=1 WHILE c<=x IF user\$= name\$(c) THEN INPUT "new score" newscore score(c) = newscore FNDIF IF c>=x THEN PRINT "user name not found" FNDIF c=c+1 FNDWHILF

chan2=OPENOUT "c:\users\george\scores.txt" FOR c=1 TO x PRINT#chan2,name\$(c),score(c) NEXT c CLOSE#chan2 ENDIF IF select\$="n" THEN

INPUT "new user name" newname\$ INPUT "your high score" highscore x=x+1 name\$(x)= newname\$ score(x)= highscore

chan2=OPENOUT "c:\users\george\scores.txt" FOR c=1 TO x PRINT#chan2,name\$(c),score(c) NEXT c CLOSE#chan2 ENDIF

GCSE Computing Controlled Assessment

Unit A453 Coding a solution

Unit Recording Sheet

Please read the instructions printed	on the other sid	de of this form.	n. O	С	((C	С	Dne	e of	f the	ese	e Un	nit F	Reco	ord	ding	ıg S	Sh	nee	ets,	su	ita	ıbl	y c	com	ple	etec	d, s	hou	ld b	e a	tach	ed	to tl	e as	sess	ed	wor	k oʻ	f ea	ch	car	ndid	late) .
Unit	A453																																				,	Yea	ar		2		0			
Centre Name																																	Ce	ntr	e N	lum	ber			Τ						
Candidate Name																																	Са	nd	ida	te I	lum	be	r	Τ						

		Guidance		Teacher Comment	Mark
Use of programming techniques	There is an attempt to solve parts of the tasks using few of the techniques identified.	There is an attempt at most parts of the tasks using several techniques.	There is an attempt to solve all of the tasks using most of the techniques listed.	An attempt has been made at all three tasks. A good range of techniques has been sensibly used.	6 Max
	[0 - 2]	[3 - 4]	[5 - 6]		6

ent use of programming	The techniques used may not be entirely appropriate to the problem and will only produce partially working solutions to a small part of the problem.	The techniques will be used appropriately giving working solutions to most of the parts of the problem. Some sections of the solution will be inefficiently coded.	The techniques are used appropriately in all cases giving an efficient, working solution for all parts of the problem.	Techniques are used appropriately. Code is generally efficient. There some inefficiencies. For example the candidate has used 3 FOR loops in task 2 where one would suffice. Program 3, particularly, would benefit from some modularity.	9
Efficient	[0 - 4]	[5 - 8]	[9 - 12]		Max 12
Design	There will be vague comments on what the task involves and a vague outline describing the intended approach to some parts of the problem. There will be brief comments on how this might be tested but with no mention of success criteria.	There will be a brief analysis of the tasks indicating what is required for each of the tasks. There will be a set of basic algorithms outlining a solution to most parts of the problem. There will be some discussion of how this will be tested and how this compares to the identified outcomes in the tasks. There will be discussion of the variables to be used and some general discussion of validation	There will be a detailed analysis of what is required for these tasks justifying their approach to the solution. There will be a full set of detailed algorithms representing a solution to each part of the problem. There will be detailed discussion of testing and success criteria. The variables and structures will be identified together with any validation required.	Problems have been analysed. Algorithms are well designed using flow diagrams. Test Strategy/success criteria discussed for Ex 1+2 but not 3 No explicit discussion of variables or structures but validation is looked at.	8 Max
	[0 - 3]	[4 - 6]	[7 - 9]		9

				1258	292505
Development	There will be some evidence to show a solution to part of the problem with some evidence to show that it works. Code will be presented with little or no annotation, the variable names not reflecting their purpose and with little organisation or structure.	There will be evidence to show how the solutions were developed. There will be some evidence of testing during development showing that many parts of the solution work. The code will be organised with sensible variable names and with some annotation indicating what sections of the code does.	There will be detailed evidence showing development of the solution with evidence of systematic testing during development to show that all parts work as required. The code will be well organised with meaningful variable names and detailed annotation indicating the function of each section.	There is evidence of solution development and some testing during development. Meaningful variable names have been used. Occasionally code lacks structure (e.g. in the Delete section of Task 3 a FOR loop is overlapped by an IF rather than using nesting.) Commenting, when used is effective, but is too often missing.	7 Max
	[0 - 3]	[4 – 6]	[7- 9]		9

Testing	There will be evidence to show that the system has been tested for function but the test plan will be limited in scope with little structure. There will be little or no evidence to show how the result matches the original criteria. The evidence of written communication is limited with little or no use of specialist terms. Errors in spelling, punctuation and grammar may be intrusive. Information may be ambiguous or disorganised. There will be some comments on others' and their own input into group work.	There will be a test plan covering many parts of the problem with some suggested test data. There will be evidence that the system has been tested using this data. There will be some evidence to show how the results of testing have been compared to the original criteria. There will be a brief discussion of how successful or otherwise the solutions are. Produces evidence of good written communication using some specialist terms. There will be few errors in spelling, grammar and punctuation. Information for the most part will be presented in a structured format. They will have commented on their own and others' contribution to any group work and [4 - 6]	The test plan will cover all major success criteria for the original problem with evidence to show how each of these criteria have been met, or if they have not been met, how the issue might be resolved. There will be a full evaluation of the final solution against the success criteria. A high level of written communication will be obvious throughout the task and specialist terms/technology with accurate use of spelling will have been used. Grammar and punctuation will be used correctly and information will be presented in a coherent and structured format. They will provide an evaluation on theirs and others' contribution to any group activities. [7 - 9]	Tests for Ex2+3 cover most eventualities and are backed up with evidence. Testing in Ex3 is lacking the same amount of rigour. Where issues have been encountered these have been discussed along with their resolution. Spelling punctuation and grammar are all of a good quality. None of the tasks required group work .	8 Max 9 38
				Total/45	

Guidance on Completion of this Form

- 1 **One** sheet should be used for each candidate.
- 2 Please ensure that the appropriate boxes at the top of the form are completed.
- 3 Using the guidance identify the most appropriate mark range for the work and enter the mark awarded for each element in the mark column.
- 4 Add appropriate comments to assist the moderator in the 'Teacher Comment' column.
- 5 Add the marks for the strands together to give a total out of 45. Enter this total in the relevant box.

URS666 Revised August 2011

A453

Task 1: Animal Age

A system to convert cat or dog ages into human equivalents

Rules

DOG:

11 years per year for 2 years then 4 per extra year

CAT

15 years for first year, 10 for second then 4 per year

- Need to get choice of cat or dog
- Need to get animal age in whole years
- Need to convert animal age to human equivalent using rules and print result.

Design DOG Cat or dog? Get age YES Са Animal age = age * 11 Get age YES Age =1 Animal age = 15 Animal age = 22 NO NO Animal age = 25 Age = 2 +(age-2)*4

YES

Animal age = 25

Age <= 2

+ (age-2)*4

NO

Development and testing

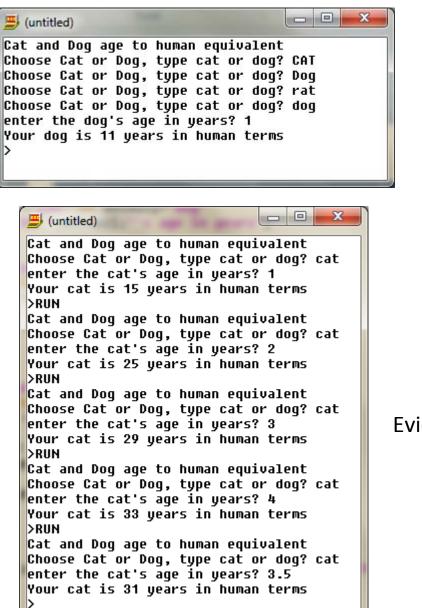
The code loops to make sure user inputs either dog or cat If dog checks for age <=2 If <= 2 then age*2 If not then 22+ (age-2)*4

If cat checks if 1 year then age 15 If 2 years the age 25 If not then 25+(age-2)*4

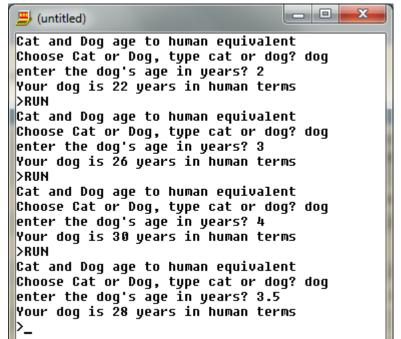
Using print formatting to output answer as sentence with variables to complete the sentence.

```
PRINT "Cat and Dog age to human equivalent"
REPEAT
INPUT "Choose Cat or Dog, type cat or dog", animal$
UNTIL animal$ ="cat" OR animal$="dog"
PRINT "enter the ";animal$;"'s age in years";
INPUTage
```

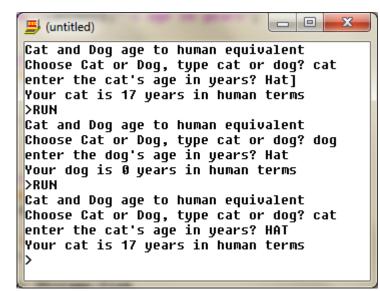
```
IF animal$="dog" THEN
IF age<=2 THEN
animalage = age*11
ELSE
animalage = 22+(age-2)*4
ENDIF
ENDIF
```


```
IF animal$="cat" THEN
IF age = 1 THEN
animalage =15
ELSE
IF age = 2 THEN
animalage =25
ELSE
animalage= 25+(age-2)*4
ENDIF
ENDIF
ENDIF
```

PRINT "Your ";animal\$;" is ";animalage;" years in human terms"


Development and testing

	Test	Data	Expected
1	Check if dog or cat	cat, dog, rat, Dog, CAT	cat, dog accepted, rat, Dog and CAT clears and ask question again
2	dog ages	1,2	Expect 11 or 22
3		3,4	Expect 26, 30
4		3.5	Expect 28
5	Cat ages	1, 2	Expect 15, 25
6		3,4	Expect 29, 33
7		3.5	Expect 27
8	Cat and dog ages	Hat	Expect error program stops


Evidence for 1 and 2

Evidence for 2, 3,4

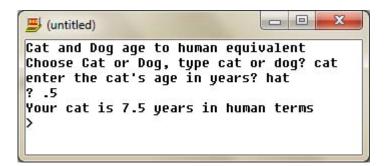
Evidence for 1,5,6,7

Test 7 NOT as expected. Why?

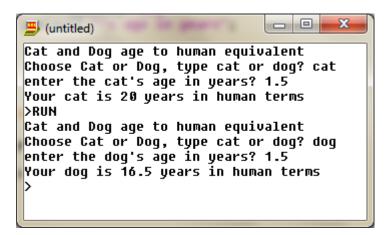
Cat makes sense, Hat taken as zero, therefore 25+(0-2)*4 = 25-8 = 17

Dog also makes sense hat taken as zero, so 0 is ≤ 2 , therefore age = 0*11

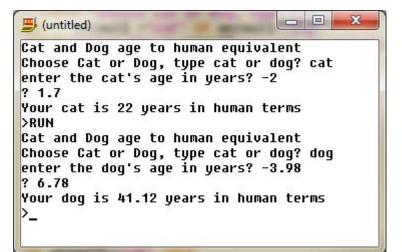
Fix:


Need to reject non numeric inputs though decimal ones appear to give a decent result.

Check 0.5 and 1.5 years for cat and dog but change age = 1 and age = 2 for cat to <=


Also only accept age >0

	Test	Data	Expect
8	Non numeric data	hat	Reject and ask for age again
9	Decimal values	Cat age 0.5	Expect 7.5
10	Decimals	Cat and dog 1.5	Expect 20 and 16.5
11	Negative values	Cat and dog -2, -3.98	Expect rejected


Evidence 8 and 9

Evidence 10

Evidence 11

Evaluation:

Tested with numeric data, results as expected, seems to work just as well with decimal values so these have been included.

Fixed issue with nonnumeric and zero or negative values with simple repeat loop to reject these values. PRINT "Cat and Dog age to human equivalent" REPEAT INPUT "Choose Cat or Dog, type cat or dog", animal\$ UNTIL animal\$ ="cat" OR animal\$="dog" PRINT "enter the ";animal\$;"'s age in years";

INPUTage UNTIL age >0 IF animal\$="dog" THEN IF age<=2 THEN animalage = age*11ELSE animalage = 22+(age-2)*4ENDIF ENDIF IF animalS="cat" THEN IF age <= 1 THEN animalage =age* 15 ELSE IF age <= 2 THEN animalage = 15 + (age - 1)*10FLSF animalage= 25+(age-2)*4 ENDIF ENDIF ENDIF

RFPFAT

PRINT "Your ";animal\$;" is ";animalage;" years in human terms"

A453

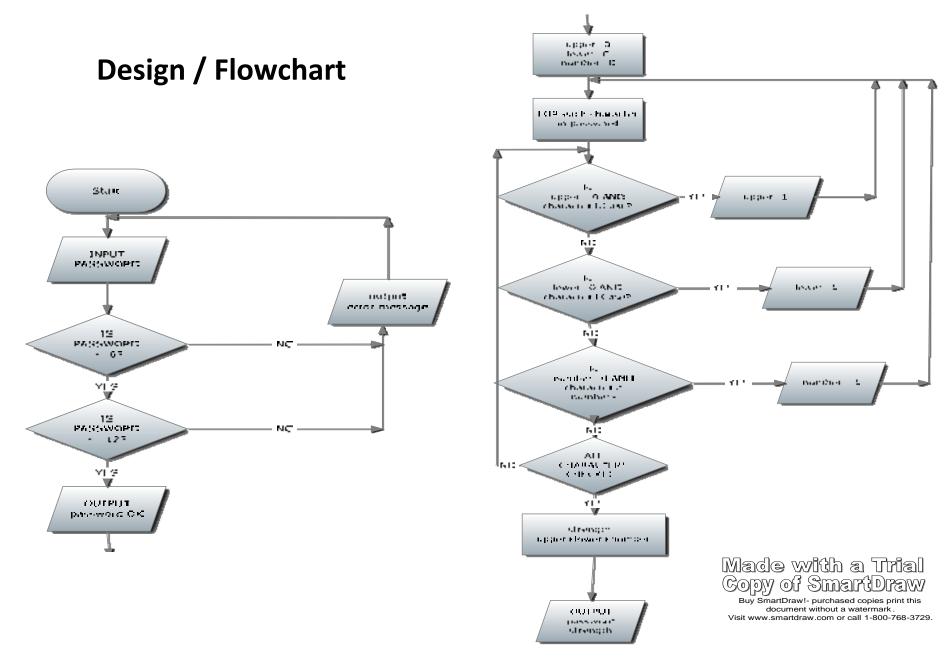
Task 2: Password strength sample task

Analysis

- 1. Input a password
- 2. Is the password between 6 and 12 characters long?

No; reject and return to stage 1

YES; output message and carry on


3. Check each character of the password in turn

Is this character upper case? If yes flag that upper case is included

Is this character lower case? If yes flag that lower case is included

Is this character a number? If yes flag that number is included

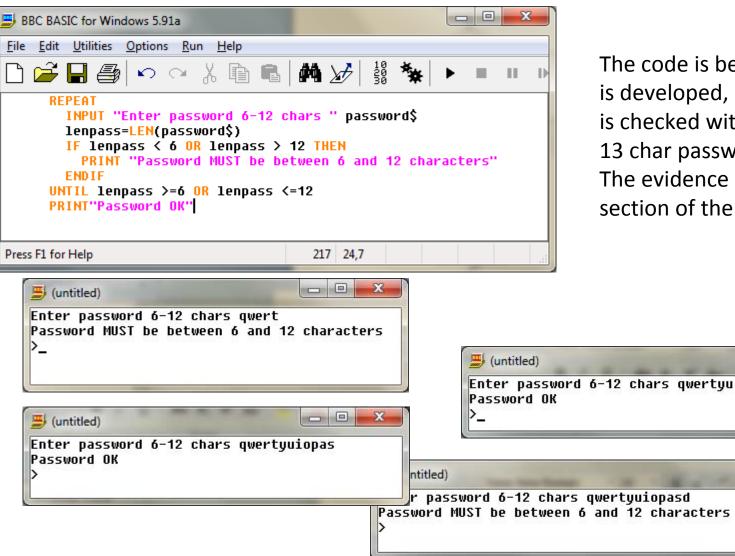
- 4. If three flags set then the password is STRONG
- 5. If two flags set then the passwords is MEDIUM
- 6. If one flag set then the password is WEAK

Design / Pseudocode

REPEAT **INPUT** the password len=length of password IF len <6 OR len >12 THEN PRINT suitable error message UNTIL len >=6 and <=12 **PRINT** password OK Initialise upper, lower and number to 0 FOR i = 1 TO lenIF MID\$(password, i, 1) is upper AND upper =0 THEN upper =1 ELSE IF MID\$(password, i, 1) is lower AND lower =0 THEN lower =1 ELSE IF MID\$(password, i, 1) is number AND number =0 THEN number =1 NEXT i strength = upper+lower+number CASE strength = 1 then PRINT "WEAK" strength = 2 then PRINT "MEDIUM" strength = 3 then PRINT "STRONG"

Design / Test strategy

We need a test strategy to use during development to show that the solution works at each stage.


Requirement: 6-12 characters

Less than 6	6 exactly	>6 and <12	12 exactly	More than 12
qwert	qwerty	qwertyui	qwertyuiopas	qwertyuiopasd
5 characters should be rejected	6 characters, boundary, should be OK	8 characters, valid input should be OK	12 characters, boundary, should be OK	13 characters should be rejected

Weak, Medium and Strong identified:

Weak	Medium			Strong
qwerty QWERTY 123456	Qwerty Awerty Zwerty	3werty 3WERTY Q23456	qwe456 1w3r5y QW345Y	QW34ty 12erTY
All lower / upper case/ numeric: weak reported	1 upper case, rest lower, also test A and Z accepted Medium reported	All medium strength combinations	With differing quantities of numbers and letters	Both cases and numeric used, Strong reported

Development & Testing

The code is being tested as it is developed, here the length is checked with 5, 6,12 and 13 char passwords. The evidence shows that this section of the code works.

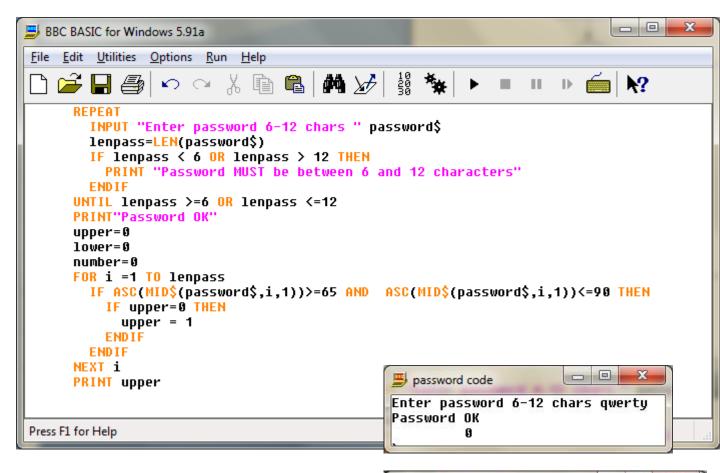
X

- -

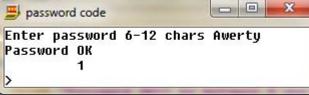
- 23

Design / Approach to testing for password strength

In my solution I am going to use the fact that all characters have a unique ASCII value A is 65, B is 66 ... up to Y which is 90 a is 97, b is 98 ... up to y which is 122 O is 48, 1 is 49 ... Up to 9 which is 57


So if the ASCII value of each character in the password is checked then we can identify if it is upper, lower or numeric.

Using LEN to check the length of the password and a simple loop from 1 to LEN(password) with the MID\$ command I can check each character individually


If I identify an upper case I will set a flag once Similarly with lower case and numeric.

If only 1 flag is set it will be WEAK, 2 it will be MEDIUM, 3 it will be STRONG

Development & Testing

Add the next section of code to check for upper case and test it with suitable test data: for example

qwerty, should return 0 Awerty should return 1 and checks that A is included in the range

Zwerty should return 1 and checks that Z is included etc.

Similarly for lower case and numeric data in the test strategy

B password code			
Enter password Password OK 1	6-12	chars	Zwerty

```
REPEAT
                         INPUT "Enter password 6-12 chars " password$
                         lenpass=LEN(password$)
                         IF lenpass < 6 OR lenpass > 12 THEN
                           PRINT "Password MUST be between 6 and 12 characters"
   Development
                         ENDIF
                       UNTIL lenpass >=6 OR lenpass <=12
   & Testing
                       PRINT"Password OK"
                       upper=0
                       lower=0
                       number=0
                       FOR i =1 TO lenpass
                         IF ASC(MID$(password$,i,1))>=97 AND ASC(MID$(password$,i,1))<=122 THEN
                           IF lower=0 THEN
The code that was
                             lower = 1
used and tested for
                           ENDIF
                         ENDIF
upper case is simply
                       NEXT i
copied and pasted
                       FOR i =1 TO lenpass
                         IF ASC(MID$(password$,i,1))>=65 AND ASC(MID$(password$,i,1))<=90 THEN
then modified
                           IF upper=0 THEN
accordingly and
                             upper = 1
                           ENDIF
checked at each
                         ENDIF
                       NEXT i
stage.
                       FOR i =1 TO lenpass
                         IF ASC(MID$(password$,i,1))>=48 AND ASC(MID$(password$,i,1))<=57 THEN
                           IF number=0 THEN
                             number = 1
                           ENDIE
                         ENDIF
                       NEXT i
                       strength=upper+lower+number
                       CASE strength OF
                         WHEN 1 : PRINT "password strength WEAK"
                         WHEN 2 : PRINT "password strength MEDIUM"
                         WHEN 3 : PRINT "password strength STRONG"
                       ENDCASE
```

Testing

Weak		Medium		Strong
All lower / upper case/ numeric: weak reported	1 upper case, rest lower, also test A and Z accepted Medium reported	All medium strength combinations	With differing quantities of numbers and letters	Both cases and numeric used, Strong reported
qwerty ✓	password code Enter password 6-12 Password OK Ø	chars qwerty	qwe456	QW34ty
QWERTY ✓	password code Enter password 6-12 Password OK password strength WE		1w3r5y	12erTY
123456 ✓	Enter password 6-12 (Password OK password strength WE(>_		QW345Y	

Weak		Medium		Strong
All lower / upper case/ numeric: weak reported	1 upper case, rest lower, also test A and Z accepted Medium reported	All medium strength combinations	With differing quantities of numbers and letters	Both cases and numeric used, Strong reported
qwerty ✓	Qwerty ✓	password code Enter password 6-1 Password OK password strength >RUN		QW34ty
QWERTY ✓	Awerty ✓	Enter password 6-1 Password OK password strength >RUN Enter password 6-1	MEDIUM	12erTY
123456 ✓	Zwerty ✓	Password OK password strength >	MEDIUM	

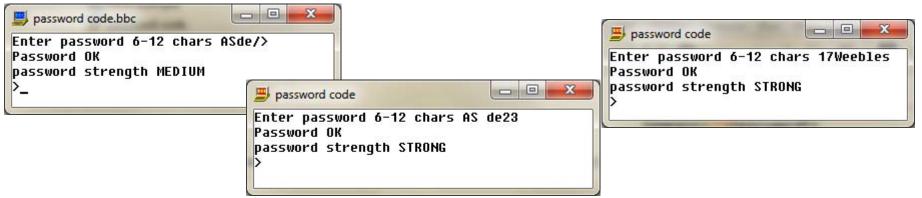
Weak		Medium		Strong
All lower / upper case/ numeric: weak reported	1 upper case, rest lower, also test A and Z accepted Medium reported	All medium strength combinations	With differing quantities of numbers and letters	Both cases and numeric used, Strong reported
qwerty ✓	Qwerty ✓	3werty ✓	>RUN Enter password 6 Password OK password strengt >RUN	-
QWERTY ✓	Awerty ✓	3WERTY ✓	Enter password 6 Password OK password strengt >RUN Enter password 6	h MEDIUM
123456 ✓	Zwerty ✓	Q23456 ✓	Password OK password strengt >	h MEDIUM

Weak		Medium		Strong
All lower / upper case/ numeric: weak reported	1 upper case, rest lower, also test A and Z accepted Mediu <u>m reported</u>	All medium strength combinations	With differing quantities of numbers and letters	Both cases and numeric used, Strong reported
qwerty ✓	C password code Enter password Password OK password stre >RUN	d 6-12 chars qwe456	qwe456 ✓	QW34ty
QWERTY ✓	A Enter passwor Password OK password stre >RUN	d 6-12 chars 1w3r5y ength MEDIUM d 6-12 chars QW345Y	1w3r5y ✓	12erTY
123456 ✓	Password OK password stre >_	ength MEDIUM	QW345Y ✓	

Weak		Medium		Strong
All lower / upper case/ numeric: weak reported	1 upper case, rest lower, also test A and Z accepted Medium reporte	All medium strength combinations password code	With differing quantities of numbers and letters	Both cases and numeric used, Strong reported
qwerty ✓	Qwerty Ent V Pas pas >RU	er password 6-12 (sword OK sword strength STI	RONG	QW34ty ✓
QWERTY ✓	Awerty Pas	er password 6-12 (sword OK sword strength STI		12erTY ✓
123456 ✓	Zwerty ✓	Q23456 ✓	QW345Y	

Testing complete all tests worked as expected.

Code explained


```
Get password
REPEAT
                                                                     Find length of password
  INPUT "Enter password 6-12 chars " password$
                                                                     Check length >=6, <=12
  lenpass=LEN(password$)
                                                                     If not print error message
  IF lenpass < 6 OR lenpass > 12 THEN
    PRINT "Password MUST be between 6 and 12 characters"
  ENDIF
                                                                     If error return to get password otherwise
UNTIL lenpass >=6 OR lenpass <=12
                                                                     Print OK
PRINT"Password OK"
upper=0
                   Initialise variables
lower=0
number=0
FOR i =1 TO lenpass
                                                                                          By checking each character in the
  IF ASC(MID$(password$,i,1))>=97 AND ASC(MID$(password$,i,1))<=122 THEN
                                                                                          string for ASCII values
    IF lower=0 THEN
      lower = 1
                                                                                          97-122 for a-z,
    ENDIF
                                                                                          Identify if the character is lower,
  ENDIF
                                                                                          If one of these has not already been
NEXT i
FOR i =1 TO lenpass
                                                                                          found flag by setting the variable to
  IF ASC(MID$(password$,i,1))>=65 AND ASC(MID$(password$,i,1))<=90 THEN
                                                                                          1, otherwise ignore.
    IF upper=0 THEN
      upper = 1
    ENDIF
                                                                                            Repeat process for upper and
  ENDIF
                                                                                            number using
NEXT i
                                                                                            65-90 for A-Z and
FOR i =1 TO lenpass
                                                                                            48-57 for 0-9
  IF ASC(MID$(password$,i,1))>=48 AND ASC(MID$(password$,i,1))<=57 THEN
    IF number=0 THEN
      number = 1
    ENDIF
  ENDIF
                                                          Add together the values for lower, upper and
NEXT i
                                                          number to get a strength value.
strength=upper+lower+number
                                                          Use the CASE command to respond
CASE strength OF
  WHEN 1 : PRINT "password strength WEAK"
                                                          according to the numeric value
  WHEN 2 : PRINT "password strength MEDIUM"
  WHEN 3 : PRINT "password strength STRONG"
ENDCASE
```

Evaluation of the solution

We now have basic functionality but we need to complete some final product testing with a range of data and typical end users.

Further testing is completed with a range of valid and invalid data:

To see what happens ASde with special characters	•	Since /> are not checked they	Medium, as expected:
		will not set any flag hence MEDIUM	Code should be modified to reject special characters
To see what happens if AS d spaces are used		Since space has an ASCII value it will be accepted and rated as STRONG	Strong as expected: Code should not accept space and should be modified
Typical strong password 17W	/eebles	Strong, valid data	Strong.

Feedback from user testing

The whole point of a password is for security, the password is displayed when typed in, this is a problem.

The code should be modified to display * characters instead of the input values.

Evaluation of the solution

Using ASCII values to check the case etc works well and this could be extended to reject non alphanumeric characters by examining the password after input for characters out of range returning the user to the input screen with a suitable error message.

From the test data provided it is clear that the code segment meets the basic requirements:

6-12 characters

Upper, lower and numeric cases through the use of flags can identify weak, medium or strong passwords.

Also from the testing it can be seen that the system also accepts spaces and special characters since, though does not flag any value to these. The code should be modified accordingly to reject these.

The testing also suggests that the password input should be masked if it is to be of any real value, such a modification can easily be completed by overwriting the input area with * characters.

This code is functional and could be used as a module in a larger program if suitably modified as identified in the test section.

Evaluation of the solution

• Possible improvements:

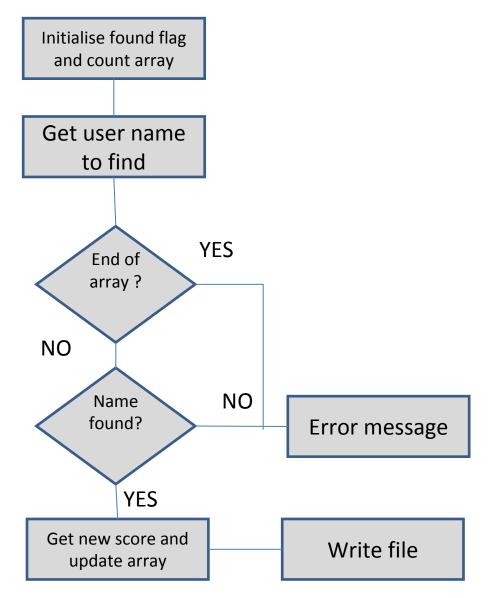
- Check data on entry for character types.
- Check data on entry for invalid characters.
- blanking the password on entry by replacing the characters with *'s
- providing a more interesting or 'friendly' interface

A453

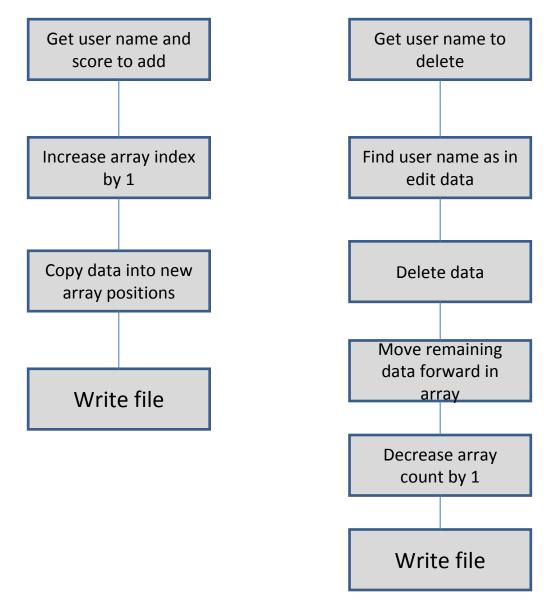
Task 3: High scores table sample task

Analysis

- A system to manage high scores
 - Create a file and be able to
 - Find a score for a user
 - Update a score for a user
 - Add a new user and score
 - Delete a user and score


Analysis

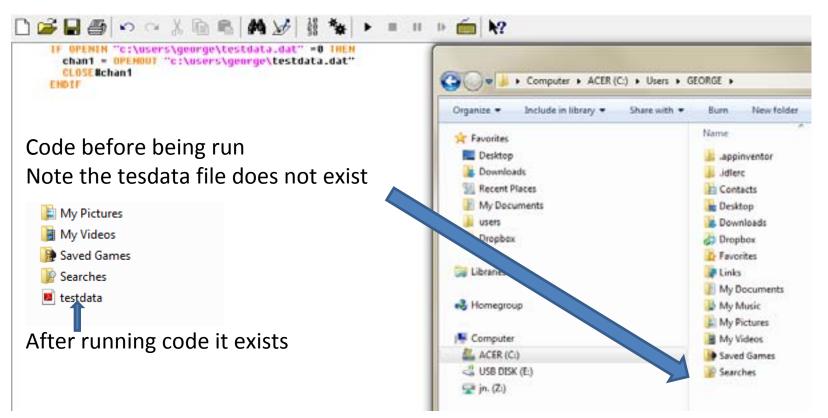
- Need to check if the file exists, if not create one
- Need to load data from the file into an array
- Need to check if username exists to update score, if not error message
- Need an option system for edit, new and delete, otherwise error message
- Need to write modified data back to file


NO Check if file exists Create file YES User Input data from file option Open file e, n, d into array Delete data Edit data routine New data routine routine

Design / File exists – choose option

Design / Edit data option

Design / New data option and delete option



Check file exists: if I try to open a file it returns 0 if the file doesn't exist so I can use this to decide if I need to create a file.

Design / development

If openin file = 0 the create file else open file

IF OPENIN "c:\users\george\data.dat" =0 THEN chan1 = OPENOUT "c:\users\george\data.dat" CLOSE#chan1 ENDIF

Current	High	Scores
fred	32	
bill	67	
jim	53	
STOP		
>		

I need to create an array for the names and scores so that I can read in the data from a file.

I have created a simple text file with three names and scores to test this section of code. DIM name\$(10) DIM score\$(10)

index=1
IF OPENIN "c:\users\george\data.dat" =0 THEN
 chan1 = OPENOUT "c:\users\george\data.dat"
 CLOSE#chan1
ENDIF

chan1=OPENIN "c:\users\george\data.dat" REPEAT INPUT#chan1,name\$(index) INPUT#chan1,score\$(index) index=index+1 UNTIL EOF#chan1 CLOSE#chan1 index=index-1

PRINT "Current High Scores" FOR i = 1 TO index PRINT name\$(i),score\$(i) NEXT i

fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? e STOP >RUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP >RUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP >RUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h	🚍 datatask	
bill 67 jim 53 To edit a score press e To add a new name and score press n ? e STOP >RUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP >RUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? M STOP	Current High Scores	
jin 53 To edit a score press e To add a new name and score press n ? e STOP SRUN Current High Scores Fred 32 bill 67 jin 53 To edit a score press e To add a new name and score press n ? n STOP SRUN Current High Scores Fred 32 bill 67 jin 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? M STOP	Fred 32	
To edit a score press e To add a new name and score press n ? e STOP >RUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP >RUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? M STOP	bill 67	
To edit a score press e To add a new name and score press n ? e STOP >RUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP >RUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? M STOP	jin 53	
Υ P STOP SRUN Current High Scores Fred Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP SRUN Current High Scores fred 32 bill 67 jim 53 To edit a score press e fo edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? M STOP	To edit a score press e	
SRUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP SRUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP		re press n
Current High Scores fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP >RUH Current High Scores fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP	STOP	
fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP >RUH Gurrent High Scores fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP		
bill 67 jim 53 To edit a score press e To add a new name and score press n ? n STOP >RUM Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP	Current High Scores	
jim 53 To edit a score press e To add a new name and score press n ? n STOP >RUM Current High Scores fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP	Fred 32	
To edit a score press e To add a new name and score press n ? n STOP ORUN Current High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP		
To add a new name and score press n ? n STOP >RUM Current High Scores fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP		
<pre>? n STOP >RUN Gurrent High Scores fred 32 bill 67 jin 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP</pre>	To edit a score press e	
DRUN Gurrent High Scores Fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n Y g Input not recognised Y h Input not recognised Y N STOP		e press n
Current High Scores fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP	STOP	
fred 32 bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP	>RUN	
bill 67 jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP	Current High Scores	
jim 53 To edit a score press e To add a new name and score press n ? g Input not recognised ? h Input not recognised ? N STOP	fred 32	
To edit a score press e To add a new name and score press n Y g Input not recognised ? h Input not recognised ? N STOP	bill 67	
To add a new name and score press n Y g Input not recognised ? h Input not recognised ? N STOP		
? g Input not recognised ? h Input not recognised ? N STOP		
Input not recognised ? h Input not recognised ? N STOP		e press n
? h Input not recognised ? N STOP		
? N STOP		
	STOP	
250	200	

I need the user to be able to select one of the options. I will do edit and new first.

PRINT "To edit a score press e" PRINT "To add a new name and score press n"

```
inputvalid=0
REPEAT
INPUT select$
IF select$ = "e" OR select$ = "E" OR select$ = "n" OR select$ = "N" THEN
inputvalid=1
ELSE
PRINT "Input not recognised"
inputvalid=0
```

```
ENDIF
UNTIL inputvalid=1
```

The flag inputvalid is used to end the loop if a valid input is entered but repeat the process until a valid input is entered. I used the OR to allow for e, E, n OR N inputs.

I used e, n, g, h, N. e,n and N were accepted but g and h made the loop request input again

📕 datatask 📃 💷 🔤
Current High Scores
fred 32
bill 67
jim 53
To edit a score press e
To add a new name and score press n
? e
your user namefred
new score58
>RUN
Current High Scores
fred 58
bill 67
jim 53
To edit a score press e
To add a new name and score press n
?
4

The data for fred has been updated as expected from 32 to 58. The edit routine should search for the user name in the array, set a flag if found, edit the score and write the new score to the array. If not found it should print and error message.

It checks not found by checking the found flag and the count through the array compared to how many were read in.

IF select\$="e" OR select\$ ="E" THEN INPUT "your user name" user\$

flag=0 count=1 WHILE flag=0 AND count<=index IF user\$= name\$(count) THEN flag=1 INPUT "new score" newscore\$ score\$(count) = newscore\$ ENDIF IF flag=0 AND count>=index THEN PRINT "user name not found" ENDIF count=count+1 ENDWHILE ENDIF

-	🖶 datatask
1	Current High Scores
1	Fred 58
	bill 67
	jim 53
	To edit a score press e
	To add a new name and score press n ? n
1	new user namesam
	your high score109 >RUN
(Current High Scores
1	Fred 58
	bill 67
ŀ	jim 53
	sam 109
	To edit a score press e
	To add a new name and score press n
	?_

The data for sam has been added at the end of the array as expected. To add the new data feature I will replace the endif with an else that allows new data to be added.

IF select\$="e" OR select\$ ="E" THEN INPUT "your user name" user\$

```
flag=0
count=1
WHILE flag=0 AND count<=index
IF user$= name$(count) THEN
flag=1
INPUT "new score" newscore$
score$(count) = newscore$
ENDIF
IF flag=0 AND count>=index THEN
PRINT "user name not found"
ENDIF
count=count+1
ENDWHILE
ELSE
```

INPUT "new user name" newname\$ INPUT "your high score" highscore\$ index=index+1 name\$(index)= newname\$

score\$(index)= highscore\$
ENDIF

📕 datataskwithdelete.bbc
Current High Scores
sam 109 fred 97 charlie 33 bill 27 To edit a score press e To add a new name and score press n To delete data press D ? d Name to deletefred >RUN Current High Scores
sam 109 charlie 33 bill 27 To edit a score press e To add a new name and score press n To delete data press D ?

The data for fred has been deleted from the file as expected.

To delete an item is more complicated, but if I just rewrite the list back to file skipping the deleted name then will effectively delete the user

```
IF select$="d" OR select$ ="D" THEN
INPUT "Name to delete" delete$
newcount=0
FOR i=1 TO index
IF delete$=name$(i) THEN
NEXT i
ELSE
newcount=newcount+1
newlistname$(newcount)=name$(i)
newlistscore$(newcount)=score$(i)
NEXT i
ENDIF
```

```
chan2=OPENOUT "c:\users\george\data.dat"
FOR j=1 TO newcount
PRINT#chan2,newlistname$(j),newlistscore$(j)
NEXT j
CLOSE#chan2
```

ENDIF

I needed two new arrays and a new counting variable to do this.

To make the final changes to include the delete option I created three IF THEN sections with each writing the modified data to the file. I added two new arrays This section shows initialising arrays checking if file exists

And printing high score table

REM Initiaalise arrays DIM name\$(10) DIM score\$(10) DIM newlistname\$(10) DIM newlistscore\$(10)

> REM check if file exists, if not create one index=1 IF OPENIN "c:\users\george\data.dat" =0 THEN chan1 = OPENOUT "c:\users\george\data.dat" CLOSE#chan1 ENDIF

REM read in data from file and display chan1=OPENIN "c:\users\george\data.dat" REPEAT INPUT#chan1,name\$(index) INPUT#chan1,score\$(index) index=index+1 UNTIL EOF#chan1 CLOSE#chan1 index=index-1

PRINT "Current High Scores" FOR i = 1 TO index PRINT name\$(i),score\$(i) NEXT i

This section shows getting user input and validating user input REM get user input and validate PRINT "To edit a score press e" PRINT "To add a new name and score press n" PRINT " To delete data press D"

```
inputvalid=0

REPEAT

INPUT select$

IF select$ = "e" OR select$ = "E" OR select$ = "n" OR select$ = "N" OR

select$ = "D" OR select$ = "d" THEN

inputvalid=1

ELSE

PRINT "Input not recognised"

inputvalid=0
```

ENDIF UNTIL inputvalid=1

This section is the delete option

It get the name to delete
Compares the data in the array to this value
If the values match it skips to the next item
If they don't match it writes the old data into a new array and
counts entries into this new array

```
REM delete option write to new array skipping name and score to delete
  IF select$="d" OR select$ ="D" THEN
   INPUT "Name to delete" delete$
   newcount=0
   FOR i=1 TO index
    IF delete$=name$(i) THEN
    NEXT i
   FISE
    newcount=newcount+1
    newlistname$(newcount)=name$(i)
    newlistscore$(newcount)=score$(i)
   NEXT i
  ENDIF
  REM write modified file back to disk
  chan2=OPENOUT "c:\users\george\data.dat"
  FOR j=1 TO newcount
   PRINT#chan2,newlistname$(j),newlistscore$(j)
  NEXT j
  CLOSE#chan2
```

ENDIF

This is the edit section It compares name to edit with data in the array and allows the user to retype the values for that entry. REM edit option IF select\$="e" OR select\$ ="E" THEN INPUT "your user name" user\$

flag=0
count=1
WHILE flag=0 AND count<=index
IF user\$= name\$(count) THEN
 flag=1
 INPUT "new score" newscore\$
 score\$(count) = newscore\$
 ENDIF
IF flag=0 AND count>=index THEN
 PRINT "user name not found"
 ENDIF
 count=count+1
ENDWHILE

chan2=OPENOUT "c:\users\george\data.dat" FOR count=1 TO index PRINT#chan2,name\$(count),score\$(count) NEXT count CLOSE#chan2 ENDIF

This is the new data section It asks for new name and score then appends these to the end of the array and writes the data to file. REM new name and score option IF select\$="n" OR select\$="N" THEN

INPUT "new user name" newname\$ INPUT "your high score" highscore\$ index=index+1 name\$(index)= newname\$ score\$(index)= highscore\$

chan2=OPENOUT "c:\users\george\data.dat" FOR count=1 TO index PRINT#chan2,name\$(count),score\$(count) NEXT count CLOSE#chan2 ENDIF

Testing and evaluation

The testing was completed as the system was developed, see evidence of each section being tested during development.

The system does what was required:

Create a file: Checks to see if file exists then creates or opens the file Add data to file: Data added by writing new item to array and writing data back to file

Locate data by name and high score: Incomplete, it can locate data by name to modify or delete, but not by high score, sort routine not implemented for this. Delete an item and score, completed data to delete simply skipped when data written to new array and new array data written back to file. Locate and update a a high score: Can update a score by user name

Most elements completed successfully but the interface is not clear and there are very limited user instructions or validation apart from choice of options and existence of data file.

Scores stored as string variables for convenience so no arithmetic possible but so sorting for highest score would require data to be converted to numeric values.